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ABSTRACT 

A Closed-Loop Optimal Neural-Network Controller 
to 

Optimise Rotorcraft Aeromechanical Behaviour 

by 

Jane Anne byland. PhD/AMES 
NASA-Ames Research Centre 

Moffett Field. California 

Previous development and design of closed-loop controllers to optimise rotorcraft 

aeromechanical behaviour focused on the simple "standard" closed-loop controller 

which employs an actively updated linear plant model (i.e., a single system matrix) to 

model the rotorcraft and simplified pseudo-optimal methods to determine the control. 

A recent development was the use of modem constrained optimisation techniques 

rather than the commonly used pseudcroptirnal methods to determine the optima! 

control subject to constraints for a linear plant model. One promising controller 

scheme which is of interest to analysts at this time utilises a 'neural-network" 

scheme to provide a general non-linear model the plant. Accordingly a closed-loop 

optimal neural-network controller was developed which employs a general non-linear 

neural-network function rather than a linear function to model the plant. Modem 

constrained optimisation methods are used to determinehpdate the constants in the 
neural-network plant model as well as in the determination of the optimal control 

vector. 

Current data is read, weighted, and added to a sliding data window. When the 

specified maximum data window length (Le., the number of data sets allowed in the 

data window) is exceeded, the oldest data set is purged and the remaining data sets 
are re-weighted. This procedure provides at least four additional degrees-of-freedom 

in addition to the size and geometry of the neural-network itself with which to 

optimise the overall operation of the controller (e.g., the update of the non-linear 

neural-network plant model and the determination of the optimal control). These 

additional degrees-of-freedom are: 1. the maximum length of the sliding data 
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window, 2. the frequency of neural-network updates, 3. the weighting of the 

individual data sets within the sliding window, and 4. the maximum number of 

optimisation iterations used for the neural-network updates. 

Cases run to date indicate that the controller is operating as planned, but that 

the controller performance as measured by the rate of convergence of the 

neural-network parameters is slow. This is due to the fact that the determination 

of the neural-network parameters by minimisation of an error metric of the 

neural-network function values is an ill-posed problem with multiple solutions for 

these parameters. Elimination of multiple solutions with corresponding acceleration 

of convergence appears to be possible with the addition of a regularisation functional 

to the error metric performance index. 
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1 .O INTROOUCTlON 

Given the predicted growth in air transportation, the potential exists for significant 

market niches for rotary wing subsonic vehicles. Technological advances which 

optimise rotorcraft aeromechanical behaviour can contribute significantly to both their 

commercial and military development, acceptance, and sales. Examples of the 

optimisation of rotorcraft aeromechanical behaviour which are of interest include the 

minimisation of vibration and/or loads. The reduction of rotorcraft vibration and loads 

is an important means to extend the useful life of the vehicle and to improve its ride 

quality. Although vibration reduction can be accomplished by using passive dampers 

and/or tuned masses, active closed-loop control has the potential to reduce vibration 

and loads throughout a.wider flight regime whilst requiring less additional weight to 

the aircraft man ihat obtained by using passive rnethads. It is ernphasised that the 

analysis described herein is applicable to all those rotorcraft aeromechanical 

behaviour optimisation problems for which the relationship between the harmonic 

control vector and the measurement vector can be adequately described by a 

neural-network model. 

Previous development and design of closed-loop controllers to optimise rotorcraft 

aeromechanical behaviour focused on the simple "standard" closed-loop controller 

which employs an actively updated linear plant model (i.e., a single system matrix) to 

model the rotorcraft and simplified pseudo-optimal methods to determine the control. 

A recent development (Reference 1) was the use of modem constrained optimisation 

techniques (References 2 through 8) rather than the commonly used pseudo-optimal 

methods to determine the optimal control subject to constraints for a linear plant 

model. One promising controller scheme which is of interest to analysts at this time 

utilises a "neural-network" scheme to provide a general non-linear model of the 
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plant. Accordingly a closed-loop optimal neural-network controller was developed 

which employs a general non-linear neural-network function rather than a linear 

function to model the plant. The modern constrained optimisation methods 

described in References 2 through 8 are used to determinehpdate the constants 

in the neural-network plant model and to determine the optimal control vector by 

employing the IMSL main driver routines DNCONF and/or DNCONG and their 

subroutines as described in Reference 9. 

Current data is read, weighted, and added to a sliding data window. When the 

specified maximum data window length (Le., the number of data sets allowed in the 

data window) is exceeded, the oldest data set is purged and the remaining data sets 

are re-weighted. This procedure provides at least four additional degrees-of-freedom 

in addition to the size and geometry of the neural-network itself with which to 

optimise the overall operation of the controller (i.e., the update of the non-linear 

neural-network function plant model and the determination of the optimal control). 

These additional degrees-of-freedom are: 1. the maximum length of the sliding data 

window, 2. the frequency of the neural-network updates, 3. the weighting of the 

individual data sets within the sliding window, and 4. the maximum number of 

optimisation iterations used for the neural-network updates. 
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2.0 TECHNICAL 

A typical general closed-loop controller which is the reference controller for this study 

is discussed first, noting the two forms of systems models which are of interest for 

rotorcraft aeromechanical behaviour problems. Next, the proposed optimal 

closed-loop neural-network (N2) controller is presented. The analytic non-linear 

neural-netwok function fN2(e)  or more specifii~ty (e) when 

the neurone distribution (i.e., the number of nodes per layer) is defined, and an 

example geometrical schematic is presented for the 3-5-3-2 neural-network function 

(e). Several neural-network node filters are presented and the 'sliding 

window" of data acquisition is explained. The optimisation method used to update 

the neural-network parameters and the control vector is discussed, and various 

sources a! !rEjectory data are Identified. The stand-alone optimal neural-network 

controller system which was developed during this study is described and the results 

to date of using this controller system are discussed. Lastly, conclusions and 

recommendations are presented. 

I, - 12 - 1.3 - - - * * - IK - JK 

G-"-"-' 
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2.1 General Closed-Loop Controller 

The general controller scheme assumes that the measured behaviour (i.e., the 

measurement state vector, the measurement vector, the Z-vector, etc.) of a physical 

system (Le., the rotorcraft, the plant, etc.) can be completely controlled by means of 

an appropriate system control vector (i.e., the control vector, the &vector, etc.). A 

schematic representation of this fundamental relationship appears in the upper part 

of Figure 1. The general controller uses this relationship together with a 

mathematical model of it to estimate the control vector to be used in a future duty 

cycle which will satisfy some criteria. The relationship between the control vector, 

the mathematical model of the rotorcraft, and the measurement state vector is 

schematically shown in the lower part of Figure 1. 

The general closed-loop controller (see Figure 2) is comprised of two parts: 1) the 

operating rotorcraft plant which generates the measurement vector for the currently 

specified control vector, and 2) the controller itself which estimates the control vector 

which will satisfy some criteria to be used in a future duty cycle. This latter function 

uses the mathematical model of the rotorcraft to estimate the new control vector. 

The parameters of the model can be updated during the trajectory if an appropriate 

update scheme is available. The new estimated control vector is then input to the 

operating rotorcraft to be used in a future duty cycle. This looping process is 

continued until completion of the last duty cycle when the operation of the controller 

is terminated. 
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2.1.1 Systems Models of a Controlled Response 

Mathematical models of the control vector - operating rotorcraft - measurement 

vector relationship used in the general closed-loop controller to estimate the control 

vector can be conveniently placed into one of two categories: 1) fixed form system 

models, and 2) free-form system models. As these category names suggest, the 

fixed form models are rigid and not too flexible even though their parameters can 

sometimes be updated during controller operation, and consequently they might not 

be suitable for experimental applications. The free form system models are not rigid 

and can be quite flexible, and consequently they can be quite amenable to 

experimental applications. 

2.1.1.1 Fixed Form Systems Models 

The fixed form systems models have a rigid mathematical function form/shape. 

Although this fondshape might be adjusted or distorted by appropriate selection of 

the values of the model parameters either initially or during the trajectory by a 

parameter identification process, the basic function shape is what it is and cannot be 

substantially changed by the model parameters. Examples of fixed form models 

include: 

Z = T e + Z ,  Linear (Simplistic) 

Non-Linear (Quadratic) 
0 

z = eeTA2 + A e + z 
1 

Z = BTunh(A0) + Z, Non-Linear (Hyperbolic Tangent) 

- 
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2.1.1.2 Free Form Systems Models 

The free form systems models do not have a rigid mathematical function fodshape. 

The fondshape can be changed substantially by appropriate selection of the values 

of the model parameters either initially or during the trajectory by a parameter 

identification process. That is, the model is one for which the representing 

function(s) can be made to approximate operating rotorcraft relationship as closely 

as required at a finite number of points by appropriately selecting the values of the 

model parameters. Examples of free form models include: 

z = &,c) Surface Fit Functions 

I K  -JK 1, - l2 - I3 - . . . . - 
(8,C) Neural-Network Functions 

where c is the attenuation coefficient matrix. 

1, -I* - 1, - . . . . - IK - JK defines the number of origin and destination 

nodes for each neural-network layer. The 

convention used here uses the superscript 

chain to specify the number of available node 

positions at the origin side (i.e., the left side) of 

each layer, except for the last superscript value 

in the chain which denotes the number of 

available node positions at the destination side 

(i.e., the right side) of the last layer. 

8 is the control vector. 

6 



The set of neural-network functions for this purpose is actually a subset of the set of 

all surface fit functions. The use of neural-network functions to model the operating 

rotorcraft within a closed-Imp optimal controller being used to optimise rotorcraft 

aeromechanical behaviour is the subject of this study. 

2.1 9 Primary Controller Function 

As the title of this report indicates, the primary function of the closed-loop controller 

described in this document is to optimise specified rotorcraft aeromechanical 

behaviour by appropriate selection of the elements of the control vector. 
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2.2 An Optimal Closed-Loop Neural-Network Controller 

The optimal closed-loop neural-network controller which was designed as part of this 

study and which is described herein, is an extension of the general controller scheme 

described in Section 2.1. As in the case of the general controller, the optimal 

closed-loop neural-network controller assumes that the measured behaviour 

(Le., the measurement state vector, the measurement vector, the Z-vector, etc.) 

of a physical system (i.e., the rotorcraft, the plant, etc.) can be completely 

controlled by means of an appropriate system control vector (i.e., the control 

vector, the 8-vector, etc.). A schematic representation of this fundamental 

relationship is presented in Figure 1. 

The optimal closed-loop neural-network controller (see Figure 3) differs from the 

general controller in that the mathematical model of the operating rotorcraft is 

specified to be a neural-network function whose parameters can be identified and 

updated during both a learning trajectory phase and a controlled trajectory phase. 

The learning trajectory phase is that part of the trajectory during which only the 

model parameters are identified and updated. The control vector is neither optimised 

nor updated during this phase. The controlled trajectory phase is that part of the 

trajectory during which either or both the control vector can be optimised and 

updated, and the neural-network model parameters can be identified and updated. 

8 



2.2.1 The NeuraENetwork Function and Its Geometry 

 he neural-network function f 3 0 )  as used in this study, is comprised of a connected 

set of nodes arranged in layers between the input control vector (i.e., the @-vector) 

and the output measurement vector (Le., the Z-vector). The convention adopted 

during this study for pictorial representations (see Figure 4) is that the signal flow and 

layer indexing goes from left to right, that is the @-vector is input to the left of 

f,,(0) with resulting neural-network internal signal flow proceeding from left to right 

until the signals exit as the Z-vector at the right extremity of &(e). The lower case 

letter k denotes the layer index number in ascending order from left to right, that is 

k increases monotonically from 1 to K when proceeding from the @-vector to the 

Z-vector where the upper case letter K denotes the index number of the last layer. 

As mentioned previously in Section 2.0, Figure 4 !!!&rates the geometry of the 
3-5-3-2 3-5-3-2 neural-network function fN2 ( 0 )  * 

I, - 12 - 1.3 - - - - - IK - JK 
The general form of the neura~-network function is fN. (e) I 

where the value of lk for k = 1,2,3, - - - K specifies the number of available node 

positions at the origin side (i.e., the left side) of the k-th layer and the value of JK 

specifies the number of available node positions at the destination side (i.e., the right 

side) of the last layer (i.e., the K-th layer). It is emphasised that the actual number of 

nodes that are used for f,,(o) in a specific application need not necessarily be 

maximum number that are available as specified by the values in the superscript 

chain. If 
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1 is the origin index, that is the node number on the origin side (i.e., the left 

side), of the k-th layer. The convention adopted during this study for 

pictorial representations (see Figure 4) is that the node number increases 

with descending position. i E lk where I k  is the set of all active origin 

nodes for the k-th layer. 

i is the destination index, that is the node number on the destination side 

(i.e., the right side), of the k-th layer. The convention adopted during this 

study for pictorial representations (see Figure 4) is that the node number 

increases with descending position. i E Jk where Jk is the set of all 

active destination nodes for the k-th layer. 

k is the layer index number in ascending order from left to right, that is k 

increases monotonically from 1 to K when proceeding from the 8-vector 

to the 2-vector where the upper case letter K denotes the index number 

of the last layer. 

then the signal path between specific nodes is uniquely defined by the indices i, j ,  k. 

If 

c i . j , k  is the attenuation coefficient for the signal directed from the i-th origin 

node of the k-th layer toward thej-th destination node of the k-th layer, 

where c ; , j + k  is constrained according to: 

r 1 

for 



f (  U,.k) is the filter function (i.e., pass-through function) which is applied just prior 

to (Le., immediately to the left of) the j-th destination node of the k-th 

layer. 

uj. k is the summation of all the attenuated signals directed from the active 

origin nodes of the k-th layer toward thej-th destination node of the k-th 

layer. 

r . is the exit signal from the kth origin node of the k-th layer which is 

directed toward thej-th destination node of the k-th layer. 

“ i .J .k  

is the arriving signal at the j-th destination node of the k-th layer. 8.k 

then 

where 

It is noted that the above expression for Uj,k can be generalised in terms of 

Kolmogorov-Gabor (KG) multinomials (Reference 10) of the form 

11 



+ 
' i . k  

X . X .  + c c ' p . 4 . j . k  p , J . k  4 . J . k  

x .  x .  + X c c cc P . q . 1 . j . k  p , j . k  q , ~ , k  1 , J . k  

The input and node compatibiIity/interface constraints are applied at each layer 

boundary. Specifically 

- 
xi, j .k  = Yi,k-1 

where it is assumed that the common signal source constraints apply, that is all the 

signals exiting from a specific node are the same. Specifically 

12 



The output measurement vector (i.e., the Z-vector) is then defined 

The neural-network function ,&(e) for a specific control vector (Le., the hector) 

and attenuation coefficient matrix (i.e., the C-matrix) is defined 

13 



2.2.2 Neural-Network Filter FunctionslPass-Through Functions 

The filtedpass-through function fc uj,&) of the j-th-k-th argument uj,& is applied just 

prior to (i.e., immediately to the left of) thej-th destination node of the k-th layer and 

consequently defines the arriving signal at the j-th destination node of the k-th 

layer. Specifically 

where the argument u,,& is the summation of all the attenuated signals directed from 

the active origin nodes of the k-th layer toward the j-th destination node of the k-th 

layer, that is 

The filtedpass-through function attenuates the uj,& argument in accordance with a 

mathematical rule/function which is specified for each (j, k) tuple. In addition to the 

No-Pass Function (Le., the Constant Function) and the Direct-Pass Function (Le., the 

Linear Function), the commonly selected filter/pass-through functions are either of 

the signoid type or of the pulse type (e.g., a radial function, a bell shaped function, 

et cetera). If these functions are continuous and smooth, that is if they are 

connected with continuous derivatives, they have the forms which are illustrated in 

Figure 5. For this study, the Hyperbolic Tangent Function was selected to be the 

signoid type function, whilst its first derivative was selected to be the pulse type 

function. The motivation for this selection was to facilitate the analytic evaluation of 

the partial derivatives required during the optimisation iteration process which is used 

to update the neural-network parameters, and to provide function compatibility 

between the signoid and radial type functions. In addition, this selection appears to 

14 



be suitable for the use of a regularisation method which uses partial derivatives of 

the error metric to define the regularisation functional that is added to the 

performance index during the neural-network parameter update process (References 

11 through 18). These four types of filter/pass-through functions are described in the 

following sub-sections. 

2.2.2.1 Constant Function: the No-Pass Function 

The Constant Function (see Figure 6) is also referred to as the No-Pass Function 

because the output signal $,k is specified by the function constant G. and is 

completely independent of the input signal u , . k .  For a specific (j ,  k) tuple, the 

Constant Function is 

J.  k 

where 

is the specifii constant. 
'Oj. k 

is the vertical translation constant. 
''j, k 

It is noted that the node defined by the (j,  k) tuple can be effectively eliminated by 

setting G. and yo. equal to zero. Gj, can be thought of as a bias signal in the 

neural-network system. 
J. k J*k 

15 



2.2.2.2 Linear Function: the Direct-Pass Function 

The Linear Function (see Figure 6) is also referred to as the Direct-Pass Function 

because the output signal 4,k can be made to be identically equal to the input signal 

u,,k by appropriately specifying the values of Aoj, k ,  C 0 j . k '  h j , k  ' and %j,k ' 
specifically by setting A, 

specific (j, k) tuple, the Linear Function is 

= 1, Gj,k = 0, u,. = 0, and yoj,k = 0. For a 
j .  k J * k  

where 

is the specified attenuation constant. 
Oi. k 

A 

is a specified constant. 
coj, k 

is the horizontal translation constant. 
' O j .  k 

is the vertical translation constant. 
"j .k  

It is noted that the node defined by this Linear Function can be made to degenerate 

to the Constant Function be setting A,. = 0. 
J ,  k 

If two points 8 ( ulj, k ,  y l j , k )  and p2 ( u2j, k ,  y2j, k )  are known to be contained in the 

mapping of the desired Linear Function, the constants Aoj,k and can be 

readily obtained from 
i. k 

- - "j ,k  " j .  k 
u - u  

2j ,k  Ij.k 
Aoj ,k  - 
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and 

- - A  ( u  - I C  ) 
y 2 j , k  - yo. Oj. k 2j .k  Oi. k 

c 

I . k  

2.2.2.3 Hyperbolic Tangent: the Threshold Function 

The Hyperbolic Tangent Function (see Figure 7) is also referred to as the Threshold 

Function because the output signal $,& has a constant value (e.g., zero) or is as 

close as required to a horizontal asymptote for values of the input signal u,,k below 

a threshold limit. For values of the input signal U j , k  above this threshold limit, the 

output signal $,k 'ramps" to another constant value or as close as required to 

another horizontal asymptote. For a specific (j, k) tupie. the Hypebiic Tangent 

Function is 

where 

is the specified horizontal scaling constant. 
Aoj. k 

is the specified attenuation constant. 
' O j .  k 

is the horizontal translation constant. 
' O j .  k 

is the vertical translation constant. 
'0,. t 

The horizontal scaling constant Aoj, can be readily determined from geometrical 

considerations (see Figure 7). If it is desired to have the function pass through a 

specific point P b+uo. , ) where Coj,k. b E (0, +-). and ( J .k  a G j . k +  "j .k  

17 



a E (0, 1) are specified, and noting that the function passes through point 

s(uo j ,k '  yo,,,>. then 

1 l + a  
Aoj.k = A E (0, +-) 

Oj. k 

2.2.2.4 First Derivative of the Hyperbolic Tangent: the Pulse Function 

The First Derivative of the Hyperbolic Tangent function (see Figure 8) is also 

referred to as the Pulse Function because its width can be made to be as narrow as 

required by the appropriate selection of the horizontal scaling constant A,. . For a 

specific (j,  k) tuple, the First Derivative of the Hyperbolic Tangent Function defined in 

the previous subsection is 

J* k 

where 

is the specified horizontal scaling constant. 
'0,.  k 

" j .  k 
is the specified attenuation constant. 

is the horizontal translation constant. 
uo;.k 

is the vertical translation constant. 
'0j.k 



The horizontal scaling constant Aoj. can be readily determined from geometrical 

considerations (see Figure 8). If it is desired to have the function pass through a 

specific point P b+uo.  a! A,. G. + Y o j , k )  where Co . b E (0, +-). ( J - k  J. k J, k j. k 

and c11 E (0, 1) are specified, and noting that the function passes through point 

G(%. J.k ' Aoj,kcoj,& + '0j.k)'  then 
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2.2.3 The Sliding Window of Data Acquisition 

The purpose of the Closed-Loop Optimal Neural-Network Controller described herein 

is to optimally control the aeromechanical behaviour of a rotorcraft over a period of 

time. This behaviour history is the time process which is the "trajectory of interest". 

For convenience and efficiency, each trajectory segment (Le., either the learning 

trajectory or the controlled trajectory) is compartmentalised into contiguous time 

intervals referred to as "duty cycles". These duty cycles are sequentially processed 

until the completion and termination of the current trajectory segment. The various 

tasks that are required to be processed during the current duty cycle are placed in a 

priority queue, initiated as appropriate, executed, and completed as time permits. 

The duration of the duty cycles is typically defined by a recurring physical event such 

as the start of a rotor revolution (i.e., after II rotor revolutions) or after a fixed time 

interval (i.e., after A?,, seconds). The acquisition and processing of the pertinent 

data required by the controller (i.e., the current measurement Z - vector and the 

current control 6 - vector) to determinehpdate the constants of the neural-network 

plant model and/or to determine the optimal control &vector are essential duty cycle 

tasks. 

The "sliding window of data acquisition" as illustrated in Figure 9 is a convenient 

means to describe the initiation and accomplishment of the data acquisition and data 

processing tasks for the sequential duty cycles. The purpose of sliding window is to 

provide a means to include previously acquired data with the latest acquired data 

when determininuupdating the constants of the neural-network plant model whilst 

culling out the older data. Data acquisition (Le., transmission of the current 

measurement Z - vector and the current control 6 - vector to the first location in 

the sliding window) is tasked during the first duty cycle after a specified delay count 

(Le., after a specified number of duty cycles) from the beginning of each trajectory 
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segment . This specified delay Count is referred to as the 'data acquisition delay" 

for the current trajectory segment. Subsequent data acquisition is tasked at a 

specified duty cycle frequency (Le., after a specified integral number of duty cycles). 

This specified duty cycle frequency is referred to as the 'data acquisition 

frequency". It is consequently not necessary for data acquisition to Mxur during 

each duty cycle atthough this is possible and is indeed frequently the case. 

The sliding window of data acquisition is comprised of the sequentially acquired data 

sets {Z, - vector and 6, - vector for 1 = 1, 2.3, 0 0 0 0 LMAX} where LMAX is 

the current number of data sets in the sliding window. Whenever a new set of data 

is acquired, the positions of the previously acquired data sets in the sliding window 

are advanced by one (e.g., the Z ,- vector and 8,- vector become the Z2 - vector 

and 02- vector, respectively; the Z2  - vectcr and 02- vec!c?r become the 

Z - vector and 03- vector, respectively; and so on until the positions of all the 

data sets in the sliding window have been advanced by one). The newly acquired 

data set becomes the new 2 ,- vector and 8,- vector. If the earliest data set in the 

window (i.e., the Z,,, - vector and 6- - vector) is advanced to a position 

beyond the specified maximum sliding window size, it is eliminated from the sliding 

window. This specified maximum sliding window size is referred to as the "window 

length". 

21 



2.2.4 Optimal Update of the Neural-Network Model 

There are two principal categories of optimisation procedures employed to optimally 

determinehpdate the neural-network plant model. The first category deals with the 

task to optimally select the constants of the neural-network plant model (i.e., the 

"optimal constants selection process") and to eliminate and/or add neural-network 

paths and/or nodes in this plant model. The second category deals with the tasking 

of data acquisition, the retention and weighting of this data for the optimal constants 

selection process, and the operation of the optimisation algorithm employed during 

this optimal constants selection process. 

The determinationhpdate of the constants of the neural-network plant model is 

accomplished using the modern constrained optimisation method described in 

References 2 through 8. This task is posed as a non-linear programming problem 

for which a performance index is minimised subject to constraints. In this case, the 

control vector is comprised of the attenuation coefficient elements C;.j.k of the 

attenuation coefficient matrix (Le., the C-matrix) which are defined in Section 2.2.1. 

The optirnisation process selects the values of Ci,j,k which minimise a performance 

index based on the closeness of predicted measurement Z - vectors (Le., the 

Z - vectors obtained using the neural-network plant model with the current values of 

the attenuation coefficient elements C;, j ,k  ) to the "actual" measurement 

Z - vectors (i.e., the Z - vectors obtained from the data sets in the sliding window). 

Provision has been made to weight the data sets in the sliding window according to 

position in the window as defined by the index I ,  for I = 1, 2, 3, 0 LMAX. The 

optimal constants selection process is the solution to the following optimisation 

problem. 



Subject to: 

where 

w,,+ is the diagona! weighting coefficient matrix for the quadratic 

difference term (i.e.. the ‘square” of the difference between the 

predicted and the actual measurement 2 - vectors) which is an 

ekment in the performance index JN2 . 

wsWl is the weighting coefficient for the I-th data set of the sliding window. 

zA, is the actual measurement 2 - vector from the Z-th data set of the 

sliding window. 

is the predicted measurement 2- vector from the I-th data set of 

the sliding window; 

ZN: 
= f ( e, c). 

“1 
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Although no automatic scheme for the elimination and/or addition of neural-network 

paths and/or nodes have been implemented as of this time, a general plan for such 

an automatic scheme has been identified; specifically : 

!f 

where EC is a suitably selected small positive real number. 

for a specific (i, j ,  k) tuple (Le., for a specific i-th origin andj-th destination in a 

specific k-th layer), close the associated i, j ,  k path by setting Ci , j ,k  = 0 and 

removing it from the optimisation control vector. This action has the advantage of 

reducing the dimension (i.e., the degrees-of-freedom) of the optimisation problem by 

one for each specific ( i , j .  k) tuple for which one of these conditions occurs. The 

reduction of dimension will hopefully enhance the efficiency of the optimisation 

process. 

v i E l k  with the specific j-th destination in the specific k-th layer, eliminate the 

associated node defined by the (j ,  k) tuple. This is accomplished by closing the 

associated i, J. k paths to this node and all paths from this node as defined by the 

(j, p, k + l )  tuple v P E Jk+l . Set the associated Ci,j,k and Cj, p ,  values to 

zero and remove them from the optimisation control vector. Removal of a node 

reduces the dimension of the optimisation problem by the sum of the number of 

i E l k  and the number of p E J k + l  . 
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where rc is a suitably selected large positive real number. 

for a significant number of i E with the specific q-th destination for 4 E Jk  in 

the specific k-th layer, the possibility exists that neural-network modelling 

performance can be enhanced by the addition of one or two nodes adjacent to the 

node defined by the (q, k) tuple. 

Specifically, let 

NIk = the number of paths from the origin nodes to the destination node 

which is defined by the (q, k) tuple (i.e., the number of i E Ik ) for 

4 E Jk  inthespecifick-th layer. 

I lk- = { i  I i E lower half of i E lk 

where the median i E is ignored when NIk is odd 

I Z: = { i t  i E upper of i E 1, 

where the median i E is ignored when NIk is odd 

N; = thenumberof i E I; forwhich 

N i  = thenumberof i E 1; forwhich 
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then 

If 

where the Trunc (0) is the truncation function and a is a suitably selected 

positive real number E [O.O, 0.51, 

then add a node adjacent to and “above” (Le., before) the destination node which is 

defined by the (9. k )  tuple by advancing the j E Jk indices by one for j 2 4 and 

adding the new node to the vacated (9, k )  position. Paths to and from this new node 

must be appropriately added by defining the associated ci, q, and cq, ,’. k + l  values 

for P E Jk+ I and 4 E Jk . This has the effect of increasing the dimension of the 

optimisation problem by the sum of the numbers of i E I, and j E JA. for each 

node added. 

+ N, 2 Trunc ( p  N,J 

where p is a suitably selected positive real number E [O.O. 0.51, 

then add a node adjacent to and “below” (i.e., after) the destination node which is 

defined by the (q, k )  tuple by advancing the j E Jk indices by one for j 2 4 + 1 

and adding the new node to the vacated (q+I, k) position. Paths to and from this 

new node must be appropriately added by defining the associated ci,q+ I ,  , and 

and q E J ,  . This has the effect of increasing 

the dimension of the optimisation problem by the sum of the numbers of i E lk and 

j E Jk for each node added. 

values for P E Jk+ 
‘4+1. P.  k + l  

It is felt that more experience using this controller should be obtained before 

attempting to define the details required for implementation of an automatic 



procedure such as the one described above, to modi  the initial "geometry" of the 

neural-network plant model. 

The tasking of data acquisition (Le., the definition of 'data acquisition delay" and 

"data acquisition frequency"), the retention and weighting of this data for the optimal 

constants selection process (Le., the definition of 'data window length" and the 

values of wSw, the weighting coefficients for the I-th data sets of the sliding 

window), and the operation of the optimisation algorithm employed during this 

optimal constants selection process (e.g., the selection of the convergence tolerance 

values and the maximum number of iterations in each optimisation solution process) 

is not amenable to th.e use of automated optimisation methods such as those 

empioyed during the optimal constants selection process. Atthough this problem can 

be posed as an integer programming problem. attempts at its solution at this time are 

accomplished by manually selecting the governing parameters based on the 

experience of operating the controller. 
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2.2.5 Control Optimisation 

One of the important tasks which can be requested during a duty cycle is the optimal 

selection of the control 8 - vector (i.e., the "optimal control selection process") to 

be used during the next duty cycle. There are two principal categories of 

optimisation procedures employed for this optimal control selection process. The 

first category deals with the optimisation of the elements of the control 8 - vector, 

subject to constraints, which minimises a metric of selected elements of the 

measurement Z - vector. Although this optimal control selection process utilises the 

most recently determined neural-network plant model (Le., neural-network plant 

model defined by the most recently determined neural-network plant model geometry 

and the associated attenuation coefficient elements ci, ,, as described in Section 

2.2.4) to define the required elements of the measurement Z - vector, the sliding 

window of data acquisition (see Section 2.2.3) is not employed directly in this 

process; it is assumed that the plant model is already defined. The second category 

deals with the operation of the optimisation algorithm employed during this optimal 

control selection process. 

As in the case of the optimal constants selection process described in Section 2.2.4, 

the selection of the optimal control 8 - vector is accomplished using the modern 

constrained optimisation method described in References 2 through 8. This task is 

posed as a non-linear programming problem for which a performance index is 

minimised subject to constraints. In this case, the control vector is comprised of 

selected elements of the control 8- vector (see Section 2.2.1). The optimisation 

process selects the values of these elements of the control 8 - vector which 

minimise a performance index defined as a metric of selected elements of the 
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measurement Z - vector. The optimal control selection process is the solution to the 

following optimisation problem. 

Minimise 
e,€ e 

Subject to: 

Jcv = zEv WCV zcv for P E I' 

for p E Io 

for P E I ,  

for P E I, 

for p E le 

where 

w,, is the diagonal weighting coefficient matrix for the quadratic term 

(i.e., the %quare" of the predicted Z - vector) which is an element in 

the performance index Jcv . 

zcv is the predicted measurement Z- vector evaluated during the 

control 6 - vector optimisatin/update process. z,, = fN2 ( e, c). 
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As in the case of the optimal constants selection process described in Section 2.2.4, 

the operation of the optimisation algorithm employed during this optimal control 

selection process (e.g., the selection of the convergence tolerance values and the 

maximum number of iterations in each optimisation solution process) and the 

frequency of tasking this process can be optimised. It is emphasised that in the real 

time trajectory environment, tasking the optimal control selection process during 

each duty cycle and/or requiring convergence of the optimisation process to within a 

small tolerance is not necessarily the “optimal” or “best” way to operate the 

optimisation algorithm. The frequency of tasking this optimal control selection 

process and the associated required amount of computation and processing (e.g., 

requiring convergence to within a small tolerance) within the duty cycles in which this 

process is tasked is indeed relevant to the overall trajectory optimisation and is 

amenable to optimisation. Although this problem can be posed as an integer 

programming problem, attempts at its solution at this time are accomplished by 

manually selecting the governing parameters based on the experience of operating 

the controller. 
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2.3 The Optimal Constants and Optimal Control Selection Processes as 
Non-linear Programming Problems 

The problems which are addressed in both the optimal constants selection 

process described in Section 2.2.4 and the optimal control selection process 

described in Section 2.2.5 are special cases of the general Non-linear Programming 

(NLP) Problem. The selection processes for both of these cases seek the optimal 

control vector which minimises a performance index subject to constraints on the 

control vector. The performance index is in general non-linear. Although the 

constraints on the control vector are constant limiting values for the optimal 

constants selection process as of the date of this report, they can also be non-linear 

if required. Provision has been made for quadratic constraints (e.g., harmonic 

magnitude constraints) on the control vector for the optimal control selection process 

to be applied as required. These selection processes thus require an optimisation 

technique which treats a more difficult non-linear problem than the relatively simple 

quadratic programming problem. 

The general non-linear programming (NLP) problem is defined in Section 2.3.1, 

and the method of its solution which is employed in this research is described 

in Section 2.3.2. 
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2.3.1 The General Non-linear Programming Problem 

The general non-linear programming (NLP) problem can be expressed in the form 

Min imise e,+ e 

Subject to: 

J = g[z(e)] for p E I ,  

where 

g[Z(e)] is the scalar performance index which is a function of the plant 

output measurement vector (Le., the Z - vector). In general, this 

function can be non-linear. 

is the set of all P 3 OP E 8. 

is the predicted measurement Z - vector evaluated during the 

optimisation process. z = fN2 ( e,c). 

is the control vector 8 - vector. 

is the equality constraint vector function which in general can be 

dependent on the 8 - vector. 

is the inequality constraint vector function which in general can be 

dependent on the 8 - vector. 
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2.32 A Solution to the General Non-linear Programming Problem 

Investigation of various methods to solve the General Non-linear Programming (NLP) 

problem led to the selection (Reference 1) of the highly successful modem methods 

of Schittkowski. Powell, Stoer, and Gill et al (References 2 through 8). These 

general NLP solution methods were coded in FORTRAN and are readily available as 

IMSL library routines (specifically, IMSL main driver routines DNCONF and 

DNCONG described in Reference 9). These methods solve the general NLP 

problem by solving a sequence of related quadratic programming sub-problems 

(QPSs) until either convergence is obtained or the specified maximum number of 

iterations (Le., the specified maximum number of quadratic programming problems to 

be solved) is reached. One important advantage of this technique is that quadratic 

programming probiems can be soived efficiently. A vev irnpo~tan? properZy of 

quadratic programming formulations is that if the quadratic coefficient matrix in the 

performance index is positive definite, the problem has a unique solution which is, of 

course, the global solution. These methods worked quite well in the research 

described in Reference 1, and have proven to be quite robust and efficient in the 

research described herein. 

The general quadratic programming problem (QPP) can be expressed in the form 

Minimise J = g(e) = eTGe + c;e for p E I ,  
e,+ e 

Subject to: 
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I 

where 

is the coefficient matrix in the linear term of the linear equality 

constraint function @( e). 
A, 

is the coefficient matrix in the linear term of the linear inequality 

constraint function W( e). 
A, 

is the constant vector term of the linear equality constraint function 4 
N e ) .  

is the constant vector term of the linear inequality constraint function 4 
w(@. 

CL is the coefficient matrix in the linear term of the quadratic 

performance index function g( 8) .  

ca is the coefficient matrix in the quadratic term of the quadratic 

performance index function g( e) .  

g(8) is the scalar performance index which in this case is a quadratic 

function of the control vector 8 - vector. 

is the set of all P 3 OP E 8.  Io 

is the right hand side null or zero vector of the linear equality 

constraint function $(e). 
04 
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is the right hand side null or zero vector of the linear inequality 

constraint function W( e). 

is the control vector 8 - vector. 

is the equality constraint vector function which in this case is a linear 

function of the control vector 8 - vector. 

is the inequality constraint vector function which in this case is a 

linear function of the control vector 8 - vector. 

The successive quadratic programming sub-problems (QPSs) used to solve the 

gexewl mn-linear prwramming (NLP) problem are formulated by using a quadratic 

approximation of the general NLP performance index function g(8) and linear 

approximations of the general NLP equality atxi inequality constraint functions #(e) 
and v( e). These approximations are obtained by simple replacement of the g( e), 
@(e), and W(0) functions with their appropriately truncated matrix Taylor Series 

expansions, where if the Hessian of g( 8)  (Le., =) is not positive definite, the 

algorithm adjusts it so that it is so that global optimality of the QPS is assured. 

Specifically, at each iteration step the quadratic programming sub-probiem (QPS) to 

be solved is: 

de2 

T 

Minimise J = z[ 1 e -  eo] [e-  eo] + cL [ e  - eo] for P E 
e,€ 8 

Subject to: 
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where 

and 

and 

is theset of all P 3 OP E 8 le 

is the right hand side null or zero vector of the linear equality 

constraint function @(e).  
04 

is the right hand side null or zero vector of the linear inequality 

constraint function W( e). 
o!Y 

e is the control vector 8 - vector. 

00 is the value of the control vector 8 - vector at the start of each 

quadratic programming sub-problem (QPS). 

If optimality as measured by satisfying the Kuhn-Tucker optimality criterion at the 

completion of an iteration step and if the specified maximum number of iterations has 

not been reached, the Hessian is updated (References 3 and 4). eo is set equal to 

the last value of 8,  and a new iteration is attempted. 
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2.4 Traje~dory Data 

The time history of the rotorcraft behaviour of interest, that is the "trajjory of 

intemf (see Section 2.2.3), is the source of the data that is acquired and/or defined 

during the specified duty cycles. Provisions in the Optimal Neural-Network Controller 

(0°C) System (Le., the code which was developed to implement the Closed-Loop 

Neural-Network Controller described herein) were made to optionally accept one of 

four forms of this data. These optional data forms are: 1) On-Line Trajectory Test 

Data (described in Section 2.4.1). 2) Off-Line Trajectory Data Tables (described in 

Section 2.4.2)' 3) Analytic Trajectory Synthesis (described is Section 2.4.3). and 

4) User Supplied Trajectory Model (described in Section 2.4.4). 

2.4.1 On-Line Trajectory Data 

A positionlslot in the Optimal Neural-Network Controller (0°C) System was 

provided to accept data sets in real time from an ongoins test. To activate this 

option, the DSTATE subroutine must be specifically designed and then coded to 

satisfy the requirements of testat hand. In general, this DSTATE subroutine will 

include the basic features of the Off-tine Trajectory Data Tables TSTATE subroutine 

described in Section 2.4.2. however it will additionally need to be formatted to accept 

the data sets transmitted from the ongoing test. This DSTATE routine will also need 

to be compatible with the 0°C System which reads one data set at a time 

commensurate with real time duty cycle methodology. 
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2.4.2 Off-Line Trajectory Data Tables 

The TSTATE subroutine in the Optimal Neural-Network Controller (0°C) System 

was provided to read off-line trajectory data sets from input tables one data set at a 

time commensurate with real time duty cycle methodology. 

2.4.3 Analytic Trajectory Synthesis 

The ASTATE subroutine in the Optimal Neural-Network Controller (0°C) System 

was provided to analytically synthesise off-line trajectory data sets one data set at a 

time commensurate with real time duty cycle methodology. Whenever trajectory 

data is to be acquired, the analytic vector synthesis function E(t)  is evaluated. 

Specifically: 

let 

then 

where t is the current time. 

z,(?) is the synthesised control Z- vector at time t with dimension 

(N x 1). 

os(?) is the synthesised control 8- vector at time t with dimension 

(M X 1). 



I 

C(t) is the synthesised combined trajectory data vector with dimension 

([M + N] X 1). 

Each element gi(t) of g( t )  is defined by 

gi(t) = [A. + B3+han 

+ [c3i + ~ . ~ E ~ " ( J S E E D ~ ~ ) ]  1 Hi(?) 

v i E [I,  (M+N)] 

where 4.. C3i, and 4. areinput constants.. 
1 1 

Hi( t ) is the composite synthesis function for the i-th element of 4< t ) .  

SEED,. and JSEER, are input seeds for the VAX FORTRAN uniformly 

distributed random number generator function RAN ( 0 )  for the 

i-th element of c( t ) .  Although there are no restrictions on the 

value of this seed other than it is an INTEGER-4 variable, the 

best results are obtained when it is initially input as a large odd 

integer. 

- 1  

RAN( 0 )  is the VAX FORTRAN uniformly distributed random number 

generator function described in Appendix D of Reference 19. 

RAN(.) E [o.o, 1.01 

Uran( 0 )  is the uniformly distributed random number generator function 

3 uran(.) E [-LO, 1.01. Uran(.) isdefined by 

uran(0) =  RAN(.) - 1.0 
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It is noted that the first term 

defining the synthesised combined trajectory data vector {( f) represents 

a bias in the composite synthesis function whilst the second term 

in the equation 

Hi(?) 
[c3, + D,.Uran 1 in this equation represents the statistical 

uncertainty in this function. 

The composite synthesis function Hi( f )  for the i-th element of ((f) is the 

summation of up to seven individual modelling functions hm( rm ) where 

rn = 1, 2. 3, MMAX. Specifically: 

MMAX . . . . . .. - . 

for MMAX E [ I ,  71 

m = l  

Eight different individual modelling functions h,( % ) are currently provided in the 

0°C System. These functions are described in the following sub-sections (i.e., 

Sections 2.4.3.1 through 2.4.3.8). With the exception of the Uniformly Distributed 

Random Function described in Section 2.4.3.8, the individual modelling functions 

hrn( rm ) can include a random bias and/or a statistical uncertainty. Specifically: 

h m ( ~ )  = [ A, m + B2 m Uran( ISEED,,,,)] 

b' rn E [l, MMAX] 

where A,,, 4 , C, , and D, are input constants.. 
rn m m 

gm( 'z;n ) is the core deterministic modelling function of the rn-th specified 

individual modelling function h,,, Z;n . 0 
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and JSEED2m are input seeds for the VAX FORTRAN 

uniformly distributed random number generator function 

RAN ( 0 )  for the m -th specified individual modelling function 

hm( ?;n ). Although there are no restrictions on the value of this 

seed other than it is an INTEGER-4 variable, the best results are 

obtained when it is initially input as a large odd integer. 

rm is the periodic time argument for the rn-th specified individual 

modelling function hm( ). 

It is noted that the first term [A. + & m Urm( ISEED2m)] in the equation 

defining the m-th specified individual modelling function h,,, '2;n represents a bias 

in this function whilst the second term [ cm + 4, Urm( JSEED2,)1 g,,,( 5 ) 
in this equation represents the statistical uncertainty in this function. 

0 
"'J .--\ - f 

Periodicity with phase shift relative to an epoch time for the core deterministic 

modelling function gm (?;n ) of the m -th specified individual modelling function 

hm( Zm ) is accomplished by specifying the period Tm time, phase shift f4m time, 

and the epoch fo, time (see Figures 10 and 11). Specifically, the periodic time 

argument Zm for gm( ?;n ) and hm( ?;n ) is 

zm = DMOD( [ t  - tom - 4, T ~ )  
where DMOD(0) is the VAWVMS FORTRAN Intrinsic Remainder Function 

described in Group 3 of Appendix B of this document and in 

Appendix D of Reference 19. 

t is the current time. 
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is the phase shift time for the rn-th specified individual modelling 

function hm( 'z;n ). 
'@rn 

is the reference/epoch time for the rn-th specified individual 

modelling function hm( Z;n ). 
'om 

Trn is the period time for the rn-th specified individual modelling 

function hm( ). 

2.4.3.1 Linear/Ramp Function 

The Linear/Ramp Function (see Figure 12) is expressed by 

gm(%) y - y o  = a zm + c 

where 

a is the specified attenuation constant (i.e., the slope). 

C is a specified constant (i.e., the intercept). 

Y is the value of the rn-th core deterministic modelling function 

gm( 2;") Plus Y O .  

is the vertical translation constant. YO 

7 ,  is the periodic time argument for the rn-th core deterministic 

modelling function gm 
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If two points I: ( rm,, ( rm2, y2 ) are known to be contained in the 

mapping of the desired LinearIRamp Function, the constants a and c can be 

readily obtained from 

) and 

and 

2.4.3.2 Serpentine Curve Function 

The Serpentine Curve Function (see Figure 13) is expressed by 

where 

a is the specified horizontal scaling constant. 

b is the specified amplitude constant. 

Y is the value of the m-th core deterministic modelling function 

is the vertical translation constant. yo 

is the periodic time argument for the rn-th core deterministic 

modelling function gm( ). 
%I 
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Scaling of this Serpentine Curve Function is readily accomplished by noting the 

obtains its maximum and minimum values geometrical property that gm 

f b /  2 when 

d 
dZm 
-[gm( G)] = 0 whichoccurswhen Zm = + a  

2.4.3.3 Witch of Agnesi Function 

The Witch of Agnesi Function (see Figure 14) is expressed by 

where 

a 

b 

Y 

is the specified amplitude constant. 

is a derived horizontal scaling constant. 

is the value of the rn-th core deterministic modelling function 

gm( % ) plus Y O -  

is the vertical translation constant. 

is the periodic time argument for the rn-th core deterministic 

modelling function gm( % ). 

Scaling of this Witch of Agnesi Function is readily accomplished by noting the 

geometrical properties that gm obtains its maximum value when 
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d --[.( ) ]  = o which occurs when zm = o 
G r n  

and that gm(a) + o as zm + +- 

and byappropriatelyspeclfylngascalingcoefficient C 3 C E (0, 1.0) sothat 

y - y o  = ca when Zm = + a  

The derived horizontal scaling constant b then becomes 

2.4.3.4 Inverted Witch of Agnesi Function 

The Inverted Witch of Agnesi Function (see Figure 15) is expressed by 

where 

a is the specified amplitude constant. 

b is a derived horizontal scaling constant. 

Y is the value of the m-th core deterministic modelling function 

gm( G ) plus Y O -  

is the vertical translation constant. YO 

Zm is the periodic time argument for the m-th core deterministic 

modelling function gm( a ). 
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Scaling of this Inverted Witch of Agnesi Function is readily accomplished by noting 

the geometrical properties that gm( *z;n ) obtains its minimum value 0 when 

d 
-[gm( )] = 0 which occurs when rm = 0 

and that g,,,(rm) + a as zm + += 

and by appropriately specifying a scaling coefficient c 3 c E (0, 1.0) so that 

y - y o =  ca when Zm = + a  

The derived horizontal scaling constant b then becomes 

2.4.3.5 Enveloped Sinusoidal Function 

The Enveloped Sinusoidal Function (see Figure 16) is expressed by 

is the specified attenuation constant of the above equation. 

is the fundamental of primary frequency of the sinusoidal factor of 

the above equation. 

n is harmonic frequency number of the sinusoidal factor of the 

above equation. 
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nf 

nm 

a 

w 

Y 

YO 

is the net frequency (i.e., the harmonic frequency number n 
times the fundamental of primary frequency f) of the sinusoidal 

factor of the above equation. 

is 2 It times the net frequency n f of the sinusoidal factor of the 

above equation. 

is a derived horizontal scaling constant for the exponential factor 

of the above equation. 

is a phase time constant of the sinusoidal factor of the above 

equation. 

is a derived horizontal shift constant for the exponential factor of 

me above equation. 

is 21t times the fundamental of primary frequency f of the 

sinusoidal factor of the above equation. 

is the value of the rn-th core deterministic modelling function 

gm( T n  ) PIUS Yo. 

is the vertical translation constant. 

is the periodic time argument for the rn-th core deterministic 

modelling function gm( ). 

Scaling of this Enveloped Sinusoidal Function can be accomplished by directly 

specifying values of c, II. a, $, w ,  and 0 or from consideration of 

geometrical properties. The exponential envelope factor c f ipe  a Zm 
of the above equation can be thought of as the coefficient of the oscillatory factor 

1 ( - 41 
Zm - @)] of this equation. The overall rate of convergence or 
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divergence can readily be defined by specifying a required value of the exponential 

envelope factor at a selected value Z;n* of Zm ; specifically 

specify B 3 C Exp, [a( z,* - v)] for the selected value T;n* 

Noting that CExp, a Zm - W ) ]  z C at Zm = w [ (  

then 

Note that divergence of the exponential envelope factor occurs when B > c, the 

exponential envelope factor is invariant when B E c, and convergence of the 

exponential envelope factor occurs when B < c. 

Either harmonic frequency number n together with 2 1t times the fundamental 

frequency f (i.e.. 0) of the of the sinusoidal factor can be directly specified, or 

the required value of n 0  can be derived from a specified net period P; 

specifically 

21t  nu = - P 

2.4.3.6 Hyperbolic Tangent: the Threshold Function 

The Hyperbolic Tangent Threshold Function (see Figure 17) is expressed by 

gm(G) = y - yo = C T a n h ( A G )  
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where 

A is a derived horizontal scaling constant. A E (0.0, + w) 

C isthespeciffedattenuationconstant. C E (0.0, +w) 

Y is the value of the rn-th core deterministic modelling function 

gm( G ) PIUS YO- 

YO is the vertical translation constant. 

Zm is the periodic time argument for the rn-th core deterministic 

modelling function gm( G ) . 

Scaling o! tfiis Hyperbolic Tangent Threshold Function !?=( ?;.) is readily 

accomplished by noting the geometrical properly that 

and by defining a required value C%C of this function for a specified value 

b E (0.0, +w) of Zm. Specifically 

for a E (0.0, 1.0) 

then 

l + a  
2b 

2.4.3.7 First Derivative of the Hyperbolic Tangent: the Pulse Function 

The First Derivative of the Hyperbolic Tangent Pulse Function (see Figure 18) is 

expressed by 
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g m ( % )  = y - yo = -{CTanh(Arm)} d = ACSech2(AZm) * rm 

where 

A is a derived horizontal scaling constant. A E (0.0, + -) 

c istheattenuationconstant. c E (0.0, +-) 

Y is the value of the rn-th core deterministic modelling function 

gm( rm ) plus YO* 

is the vertical translation constant. YO 

r m  is the periodic time argument for the rn-th core deterministic 

modelling function gm( % ). 

Scaling of the First Derivative of the Hyperbolic Tangent Pulse Function gm 

readily accomplished by noting the geometrical properties that gm( % ) obtains its 

maximum value AC when 

d 
--[gm( G)] = 0 which occurs when Zm = 0 

and that gm(rm) -, o as rm + f- 

and by defining a required value aAC of this function for a specified value 

b E (0.0, +-) of Zm . Specifically 

aAC for a E (0.0, 1.0) 
Z, = b 

Y - YO = g m ( r m ) I  

then 
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2.4.3.8 Uniformly Distributed Random Function 

The Uniformly Distributed Random Function (see Figure 19) is expressed by 

hm( a )  = y - yo = [Al m + I?, m Uran( ISEED, m )] 

where A and B areinputconstants. 
Im 1, 

hm( a)  is the m-th specified individual modelling 

rather than a core deterministic modelling 

as those defined in the above sub-paragraphs. 

is the input seed for the VAX FORTRAN uniformly distributed 

random number generator function RAN(.) for this m-th 

specified individual modelling function h, . Although there 

are no restrictions on the value of this seed other than it is an 

INTEGERV variable, the best results are obtained when it is 

initially input as a large odd integer. 

0 

zm is the periodic time argument for the rn-th specified individual 

modelling function hm( ). 

2.4.4 User Supplied Trajectory Yodel 

A positiodslot in the Optimal Neural-Network Controller (0°C) System was 

provided to allow the user to specifically define the trajectory data sets by designing 

and coding the USTATE subroutine which will satisfy the user's requirements. This 

USTATE routine will, however, need to be compatible with the 0°C System which 

reads one data set at a time commensurate with real time duty cycle methodology. 
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2.5 The Stand-Alone Optimal Neural-Network Controller System 

The Optimal Neural-Network Controller (0°C) System was designed and 

developed to enable and facilitate accomplishment of the research described herein. 

The 0°C System is the means to execute the concepts described in the preceding 

sections. This system, which was originally coded in FORTRAN for a Digital 

Equipment Corporation (DEC) VAWVMS system, currently residesloperates on a 

Compaq-DEC Alpha 4100 Model Processor. 

The general hierarchy showing the principal routines of the 0°C System is 

illustrated in Figure 20. The Input and other important parameters of this system are 

defined in Appendix A. The principal routines of the 0°C System are described in 

Appendix B and their listings are presented in Appendix C. 

52 



During the course of development and debug of the Optimal Neural-Network 

Controller (0°C) System, several neural-network models which differed in the 

number of layers, number of nodes per specific layer, and the values of the 

constants in the associated specific neuralnetwork filter functions were examined. 

Additionally, trajectory data was defined from both tabular test data and analytic 

trajectory synthesis. Variations in data acquisition frequency and window length 

for the sliding window of data acquisition were also considered. 

Two principal categories of cases were selected to be used to study this dynamic 

+tima! neural-network controller process in detail. Simplified static test data from a 

40 x 80 Foot Wind Tunnel test performed for the BO-105 Individual Blade Control 

(IBC) test programme (Reference 20) was used to define the neural-network plant 

model constants in the first category of cases. A dynamic state propagation based 

on an analytically synthesised trajectory (Le., a synthesised time history of 

the control @-vector and the measurement Z-vector) was used to define the 

neural-network plant model constants from which the control 8-vector was 

optimised in the second category of cases. 

The data for the first case (Reference 20) consisted of a table of values of the scalar 

vibration metric at 30 degree increments of the "two-per-rev" phase angle starting at 

0 degrees and ending at 360 degrees (Le., at Oo, 30'. 60'. * * a  , 360"). A 

1 - 12 - 4 - 1 ( 0 )  was initially selected to 

define a neural-network plant model which would represent this relationship. 

Threshold functions (Le., Hyperbolic Tangents) were selected for the filter functions 

at the destination nodes of the first and second neural-network layers, whilst a 

1 - 12 - 4 - 1  
neural-network function f 

N2 
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direct-pass function (Le., a linear function) was selected for the output node (Le., the 

destination node of the third neural-network layer). When convergence of the 

optimal constants selection process (see Section 2.2.4) for this 1 - 12 - 4 - 1 

neural-network model was not obtained, additional destination nodes were added to 

the first and second neural-network layers. After several nodal schemes were tried, 

a 1 - 14 - 5 - 1 neural-network function f ( 0 )  was finally selected (see 

Figure 21) for the plant model. The motivation for this geometry was to provide filter 

functions at the ends and between the input tabular "two-per-rev" phase angles 

(i.e., at -15". 15". 45". , 375') at the destination nodes of the first layer. An 

additional destination node for the second layer was provided to handle the 

additional signals resulting from the increased destination nodes of the first layer. 

Convergence of the optimal constants selection process for this case was slow and 

not good. It appears as if the values of the vibration metric computed from the 

solution neural-network plant model approach either the upper or the lower table 

values, and that convergence scatters about multiple solutions to this optimal 

constants selection process. This is due to the fact that the optimal constants 

selection process as defined in Section 2.2.4 is in actuality an ill-posed problem with 

multiple solutions. An abbreviated listing of this first case is presented in 

Appendix D. 

1-14 - 5 - 1  

N2 

The data for the second case was generated using a synthesised trajectory. A 

(3 X 1) control @-vector and a (4 X 1) measurement Z-vector were assumed. 

Several neural-network geometrical structures were considered before selecting the 

3 - 8 - 5 - 4 neural-network function f ( 0 )  (see Figure 22) for the plant 
N2 

model. Convergence of the optimal constants selection process for this case was 

also slow and not too good. It appears as if the values of the measurement Z-vector 

computed from the solution neural-network plant model approach either the upper or 

3-8- 5 - 4  
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the lower synthesised values, and that convergence scatters about multiple solutions 

to this optimal constants selection process. As in the first case this is due to the fact 

that the optimal constants selection process as defined in Section 2.2.4 is in actuality 

an ill-posed problem with multiple solutions. An abbreviated listing of this first case is 

presented in Appendix E. 

Although the 0°C System operated as planned and designed, and in particular, 

the optimisation algorithm proved to be quite robust and reliable for this application, 

convergence of the optimal constants selection process was slow and not too good. 

This is certainly not catastrophic however. The research of A. J. Meade, Jr. et al 

(References 11 through 18) points to a solution to this problem; specifically, addition 

of a reguiarising functional to the perfr>mi,ee index o! the optimal constants 

selection process. In additiin, it is noted and emphasised that even though the 

optimal constants selection process is not fully converged, the optimal control 

selection process (see Section 2.2.5) can still provide a control &vector solution 

which is better than that obtained by conventional methods. This will occur when the 

solution neural-network plant model is a better representation of the actual plant than. 

the conventional model which is usually linear. Indeed as was pointed out at the end 

of Section 2.2.4, the operation of the optimisation algorithm itself (Le., the selection 

of the convergence tolerance values and the maximum number of iterations in each 

optimisation process) can be optimised in the context of the dynamic data 

gathering - control optimisation process. It is emphasised that it is not necessarily 

necessary to converge fully to a solution for the neural-network plant model 

constants in order to make this procedure attractive. 

"NZ 
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3.0 CONCLUSIONS and RECOMMENDATIONS 

The Optimal Neural-Network Controller (0°C) System which was developed as 

part of this research, operated as planned and designed. Although the sliding 

window of data acquisition and the control &vector optimisation worked well, the 

update of the neural-network plant model by means of the optimal constants 

selection process was in general, slow to converge and/or converged to multiple 

solutions for the neural-network constants. This is due to the fact that the optimal 

constants selection process as defined in Section 2.2.4 is in actuality an ill-posed 

problem with multiple solutions. Fortunately as noted in Section 2.6, this is not 

necessarily catastrophic since the primary objective of this process is to determine a 

nearly optimal control &vector regardless of the state of refinement of the plant 

model which is merely a means to that end. 

In addition to the general need to examine a greater diversity of rotorcraft cases and 

to experiment with the types of the neural-network filter functions and the values of 

their associated constants, three principal areas of improvement and development of 

the optimal constants selection process have been identified; these are: 

1. Implement a regularisation method in the optimal constants selection 

process such as that developed by A. J. Meade, Jr. et al (References 11 

through 18) which adds a regularisation functional A 
performance index JN2 of this process (see Section 2.2.4). This 

regularised performance index J is R 



where 

a is a specified weightingkmoothing constant; a > 0. 

is the weighting coefficient for the I-th data set of the 

sliding window. 

A candidate regularisation functional was identified. This functional is a 

metric of the first partial derivatives with respect to C; specifically 

where the w, are specified weighting constants; wRi, j .  > 0.  
i.j, k 

The motivation behind the selection of a first partial derivative metric as the 

functional to be adjoined to the performance index is simply that the 

process of driving the first partial derivatives to zero with the optimisation 

algorithm can act as a powerful smoothing agent for the neural-network 

optimal constants selection process. This latter property arises from the 

definition of a limit. Specifically, as the solution c* to the optimal 

constants selection process is approached, at m e  point there will exist a 

6-neighbourhood N8( C') about C* 3 given an & > 0, whenever 

C E N6(C*) 
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which simply means that the tendency of the neural-network plant model to 

deviate from the actual plant between evaluations of the neural-network 

constants will be small near the evaluation points. It is noted that the higher 

partial derivatives of the filter functions defined in Sections 2.2.2.1 through 

2.2.2.4 are simple and readily evaluated. 

2. Implement an automatic nodal additioddeletion scheme in the optimal 

constants selection process such as that described in Section 2.2.4. 

3. Develop and implement concepts to automatically adjust the constants in 

the neural-network filter functions to provide better and more compatible 

scaling of these functions for the input trajectoty data. 
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A(L3rL2rL1) 16 
A1 (4.Ld-i) 16 
W-3J-2,Ll) 16 
A3(L2,Li) 16 
ALPHA(L3,L2.L1) 16 
AMAXC( I) 28 
AMAXNNC(I,J,K) 25 
AMAXNNL(I,J,K) 22 
AMINC(1) 28 
AMINNNC(1,J.K) 25 
AMINNNL(I,J,K) 22 
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CDELAY 11 
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CONST5 6 
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CVBDC 40 
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31 
38 
42 
28 

ICONNNC(I,J,K) 25 
ICONNNL(I,J,K) 22 
ICUT 32 
ICV(I) 27 
ICVDEF 42 

Parame ter Paae 

IECDEF 42 
IFUNCT(L3,L2,L1) 17 
I I  43 
Il l  43 
IlJK 43 
IJK 43 
IJKCVC(1,J.K) 24 
IJKCVL(1,J.K) 21 
IOPTC 29 
IOPTNNC 26 
IOPTNNL 23 
IPHASE 32 
SEED1 (L3,LzrL1) 18 
ISEED~(L~,L~,LI) 18 
ISEED3(L2,L1) 
STEP 
ISTEPO 
J 
J 
J 
J 
J 
J 
J 
J 
J 
J 
J 
J 
J 

JJ 
JEC(J) 

JJECC(J) 
JJECL(J) 
JJJ 

18 
32 
11 
2 
6 
14 
21 
21 
23 
24 
24 
26 
27 
33 
38 
43 
27 
43 
24 
21 
43 

JSEED1 (L3,L2,L1) 18 
JSEED2(L3,LzIL1) 18 
JSEED3(L2,L1) 19 
K 2 
K 14 
K 21 
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Parameter List (Continued) I 

Paramete r 

K 
K 
K 
K 
K 
L 
L 
L 
L 
L 
L 
Ll 
L1 
L1 
L1 
L2 
L2 
I2 

L3 
4 
L3 
LARGE1 
LARGE2 
LARGE3 
LARGE4 
LDELAY 
LMAX 
LMAX 
LSTEP 
LTBL 
LTBL 
MlTNC 
MITNNNC 
MITNNNL 
MULT - NCON 
NCONC 
NCONNNC 
NCONNNL - NCV - NEC 

Paae 
23 
24 
26 
38 
43 
2 
6 
9 
11 
33 
43 
2 
6 
19 
33 
2 
19 
33 
2 
19 
33 
6 
6 
6 
6 
9 
33 
44 
33 
6 
34 
29 
26 
23 
7 
2 
44 
44 
44 
2 
3 

Parameter Paae 
NFUNCT(J,K) 14 
NI(K) 15 
NlCV 44 - NlDlM 3 
NIJKCVC 44 
NIJKCVL 45 - NlJKDlM 3 
NJ(K) 15 - NJDIM 3 
NJEC 45 
NJJECC 45 
NJJECL 45 - NJKDIM 3 
NK 15 - NKDIM 3 - NLlDIM 4 
NW-1) 7 
NWLl) 19 - NU1 4 - NL2DIM 4 
NL3(L2,Li) 19 - NL321 4 - NL3DlM 4 - NLDIM 4 - NLTBL 5 
NN(L3J-2J-i) 19 
NNCID 11 
NNlD 34 
NNLID 9 
NNUP 34 
NNUPO 34 
OMEGA(L3,L2,L1) 20 
ONE 48 
OUTC 29 
OUTNNC 26 
OUTNNL 23 
PERIOD(L~,LS,L~) 20 
PHASE(L~,L~,LI) 20 

PI 48 
PINDX 45 

PHI(L3L2J-1) 20 

Parame ter Pacle 

PSI(L3,L2,Ll) 20 
PT100 48 
PT200 48 

48 
PT300 
PT500 
PT800 48 
RTD 48 
SCVC(l) 27 
SCVNNC(1,J.K) 24 
SCVNNL(I,J,K) 21 
SMALL1 7 
SMALL2 7 
SMALL3 7 
SMALL4 7 
SMAXC( I) 28 
STMODC 11 
STMODL 9 
SUMSQ 46 
SUMSQW(L) 47 
T 34 
TABS 34 - TBLMAX 7 - TBLMAX 35 
TClNlT 12 
TCFINL 12 
TCSTEP 12 
TCTYPE 12 
TCUT 35 - TD(L) 7 - TD(L) 35 
TEN 48 
TENM2 48 
TENM3 48 
TENM6 48 
TENM8 48 
TENP2 48 
TENP3 48 
TENP6 48 
TENP8 48 
TlNlT 7 
TFINL 7 
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Parameter List (Continued) 

Paramete r 

THREE 
TLlNlT 
TLFINL 
TLSTEP 
TLTYPE 
TREL 
TSTEP - lTBL(LTBL) - lTBL( LTBL) 
TWO 
TWOPI 
U NN( J ,K) 
UPDATE 
WC(JJ) 
WNNC( J JJ) 

!?age 
48 
9 
9 
10 
10 
35 
36 
7 
36 
48 
48 
38 
12 
47 
47 

Parameter 
WNNL( J J J) 
WTC(J) 
WTNNC(J) 
WTNNL(J) 
WTSNNC(L) 
WTSNNL(L) 
XO(L3L2,Ll) 
=(I) - XD(I,L) - XD(I,L) 

XN(U 
XNO(J,K) 

XNN(1,J.K) - XTBL(I,LTBL) 

Bus Parameter Qaae 
47 
27 
25 
22 
13 
10 
20 
36 
8 
36 
15 
36 
38 
8 

- XTBL( I ,  LTBL) 
YO(L3,L2.L1) 
YAtJ) - YD(J,L) - YD(J,L) 
W J )  
YNO(J,K) 
Y NN( J ,K) 
YR~(L~,L~LI) 

YR3(L2,Li) 
ym(L3k21Ll) - YTBL(J,LTBL) - YTBL(J.LTBL) 
ZERO 

36 
20 
36 
8 
37 
37 
15 
38 
20 
20 
20 
8 
37 
48 

Denotes Data Defined by NAMELIST CDATA Input Data read from Subroutine INIT. 
The CDATA NAMELIST input is used to define the trajectory, 
optimisation, and neural-net models and options required to operate the 
OPTIMNN System. - Denotes Data Defined by PARAMETER Statements. This Data defines the 
Dimensions of the Principal Arrays of the OPTIMNN System. 

-Denotes Data Defined by NAMELIST CDATA Input Data read from Subroutine 
INIT, or by Directly Read On-Line Test Data, or by Internally 
Computed Data. This Data defines the “Actual” (Reference) Plant Input 
Vector and/or Output Vector at Specified Trajectory Time Points. 
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INPUT Parameters 
to the 

OPTIMNN Code 

via Namelist CDATA - via PARAMETER Statements - via Namelist DDATA, 
or On-Line Test Data, 
or lnternally Computed Data 

Denotes Data Defined by NAMELIST CDATA Input Data read from Subroutine INIT. 
The CDATA NAMELIST input is used to define the trajectory, 
optimisation, and neural-net models and options required to operate the 
OPTIMNN System. - Denotes Data Defined by PARAMETER Statements. This Data defines the 
Dimensions of the Principal Arrays of the OPTlMNN System. 

-Denotes Data Defined by NAMELIST CDATA Input Data read from Subroutine 
INIT, or by Directly Read On-Line Test Data, or by Internally 
Computed Data. This Data defines the “Actual” (Reference) Plant Input 
Vector andlor Output Vector at Specified Trajectory Time Points. 
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Parameter 

Input Group 1 

Dimensions of the Principal Arravs of the 
OPTIMNN Svstem 

Def au It 
or 

Initial 
Value 

I 

J 

K 

L 

L1 

L2 

4 

w NCON 

- NCV 

1 

1 

1 

1 '  

1 

1 

1 

See Def 

NL2DIM 

Definition 

Index which Specifies the I-th Element Position in 
the Origin Vector for the Specific Neural-Network 
Layer specified by the index "K" (INTEGER*4). 

_-.-..---.__--.-_-- __--.-------.-._--_-_____________l_ ...__ ~ -____ ____ ~ _---_---_.--.._. 

Index which Specifies the J-th Element Position in 
the Destination Vector for the Specific Neural- 
Network Layer specified by the index "K" 
(INTEGER*4). 

Index which Specifies the K-th Specific Layer in the 
Neural-Network (INTEGER*4). 

Index which Specifies the L-th Data Set in the Data 
Sliding Window (INTEGER*4). 

Index which Assigns the Analytic Modelling 
Function for a specific (L~,LZ,L~) to either the Plant 
Input Vector (i.e., the Plant Control Vector) or the 
Plant Output Vector (i.e., Plant MeasuremenVState 
Vector) (INTEGER.4). 

= 1 Specifies that the Model applies to an element of 
the Plant Input Vector (i.e., the Plant Control 
Vector). 
Specifies that the Model applies to an element of 
the Plant Output Vector (i.e., Plant 
MeasurementlState Vector). 

= 2 

Index which Specifies the Element Number for the 
Plant Input Vector (i.e., the Plant Control Vector) if 
L1 = 1, or the Plant Output Vector (i.e., Plant 
MeasurementlState Vector) if L1 = 2 (INTEGERf4). 

Index which Specifies the Element Number of the 
Analytic Modelling Function for a specific (L2,L1) 
(INTEGER*4). 

Dimension of the Constraint Function Vector 
Arrays such as the CON(I1JK) and CON(I1I) Vectors 
(I NTEG ER*4). 

NCON = NL2DlM 

Dimension of the Optimisation Control Vector 
Arrays such as the CV(IJK) and CV(II) Vectors 
(INTEGER*4). 

NCV = JMAXO(NL2DIM, NIDIM*NJDIM*NKDIM) 
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Parameter - NEC 

- NlDlM 

- NiJKDiM 

- NJDIM 

- NJKDIM 

- NKDlM 

Input Group 1 (Continued) 

Dimensions of the Princbal Arravs of the 

Def au I t 

Initial 
Value 

NUDIM 

or 

16 

See Def 

16 

See Def 

4 

OPTIMNN Svstem 

Definition 

Dimension of the Optimisation End Conditions 
Vector Arrays such as the EC(JJJ) and EC(JJ) 
Vectors (INTEGER.4). 

NEC = NUDIM 

Dimension (Le.,., the 1.u.b) of the I-th Subscript of the 
Neural-Network Arrays (Le., the subscript which 
defines the element position in the Origin Vector for the 
Neural-Network Layers) such as those defined in 
Groups 5 and B (e.g., the CW(I,J,K), and XNN(I,J,K) 
Arrays) but not necessarily limited to arrays defined in 
tnese groups jiiuTEGEFk4j. 

Equivalent Singie Dimension of the Thtee-Dimensional 
Neural-Network Arrays such as those defined in 
Groups 5 and B (e.g., the CW(I,J,K), and XNN(I,J,K) 
Arrays) but not necessarily limited to arrays defined in 
these groups (INTEGER.4). 

NlJKDlM = NIDIM+NJDIM+NKDIM 

Dimension (e.g., the i.u.b) of the J-th Subscript of the 
Neural-Network Arrays (Le., the subscript which 
defines the element position in the Destination Vector 
for the Neural-Network Layers) such as those defined in 
Groups 5 and B (e.g., the AN(J,K), CW(I,J,K), 
UNN(J,K), and XNN(I,J,K) Arrays) but not necessarily 
limited to arrays defined in these groups (INTEGER.4). 

Equivalent Single Dimension of the Two-Dimensional 
Neural-Network Arrays such as those defined in 
Groups 5 and B (e.g., the AN(J,K), and UNN(J,K) 
Arrays) but not necessarily limited to arrays defined in 
these groups (INTEGER.4). 

NJKDIM = NJDlM*NKDlM 

Dimension (Le., the 1.u.b) of the K-th Subscript of the 
Neural-Network Arrays (Le., the subscript which 
defines the Specific Neural-Network Layer) such as 
those defined in Groups 5 and B (e.g., the AN(J,K), 
CW(1,J.K). NI(K), NJ(K), UNN(J,K), and XNN(1,J.K) 
Arrays) but not necessarily limited to arrays defined in 
these groups (IMEGER.4). 
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Input Group 1 (Continued) 

Parameter 

Dimensions of the Principal Arrays of the 
OPTIMNN Svstem 

- NLlDIM 

- N U 1  

- NL2DIM 

- NL321 

- NL3DIM 

- NLDlM 

Def au It 
or 

Initial 
Value Definition 

.-------I-__- ~ ~ .--- __._ _.--__._--_--_-__._.I_____ ~ __  
2 Dimension (e.g., the 1.u.b) of the Lq-th Subscript of the 

Analytic Trajectory Synthesis Arrays (Le., the 
Subscript which Assigns the Analytic Modelling 
Function for a specific (L3,L2,L1) to either the Plant 
Input Vector if L1 = 1, or the Plant Output Vector if 
L1 = 2) such as those defined in Group 6 (e.g., the 
A3(L2,L1), IFUNCT(L~L~,LI), NL2(L1), NL~(L~,LI 1, and 
NN( L~,L~,LI) Arrays) but not necessarily limited to 
arrays defined in that group (INTEGER'4). 

See Def Equivalent Single Dimension of the Two-Dimensional 
Neural-Network Arrays such as those defined in 
Groups 6 (e.g., the A3(L2.L1) and NL3(L2,LI) Arrays) 
but not necessarily limited to arrays defined in that group 
(INTEGER*4). 

NL21 = NL2DlM*NLlDIM 

12 Dimension (e.g., the 1.u.b) of the Llth Subscript of the 
Analytic Trajectory Synthesis Arrays (Le., the 
Subscript which the Element Number for the Plant 
Input Vector if L1 = 1, or the Plant Output Vector) 
such as those defined in Group 6 (e.g., the A3(L2,L1), 
I FUNCT( L3; L2, Ll ) , NL3( L2, L1 ) , and NN ( L3, L2, Ll ) Arrays) 
but not necessarily limited to arrays defined in that group 
(INTEGER*4). 

See Def Equivalent Single Dimension of the Three-Dimensional 
Analytic Trajectory Synthesis Arrays such as those 
defined in Group 6 (e.g., the IFUNCT(L~,L~,LI) and 
NN(L3,L2,L1) Arrays) but not necessarily limited to 
arrays defined in that group (INTEGER*4). 

NL321 = NL3DIM*NL2DIM*NLl DIM 

7 Dimension (e.g., the 1.u.b) of the Lpth Subscript of the 
Analytic Trajectory Synthesis Arrays (Le., the 
Subscript which Specifies the Element Number of the 
Analytic Modelling Function for a specific (L2,L1)) 
such as those defined in Group 6 (e.g., the 
IFUNCT(L3,L2,L1) and NN(L3,L2,L1) Arrays) but not 
necessarily limited to arrays defined in that group 
(I NTEG ER*4). 

Dimension (i.e., the 1.u.b) of the L-th Subscri t of the 
Data Set Arrays (i.e., the subscript which de ines the 
Specific Data Set) in the Data Sliding Window such 
as those defined in Group A (e.g., the TD(L), XD(I,L), 
and YD(J,L) Arrays) but not necessarily limited to arrays 
defined in this group (INTEGER*4). 

P 300 
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Input Group 1 (Continued) 

Dimensions of the Principal Arravs of the 
OPTIMNN Svstem 

Default 

Initial 
Parameter Value Definition 

or 

Dimension (Le., the 1.u.b) of the LTBL-th Subscri of 
the Data Set Arrays (i.e., the subscript which de ines 
the Specific Data Set) such as those defined in 
Group 2 (e.g., the lTBL(LTBL), XTBL(I,LTBL), and 
YTBL(J,LTBL) Arrays), but not necessarily limited to 
arrays defined in this group, in the Plant Model Data 
Table used when the 'Actual Plant" is modelled using 
Routine TSTATE (INTEGER*4). 

p' - NLTBL 600 
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Input Group 2 

Control Traiectories) ProDagation Parameters 
Overall Traiectorv ( Excluding Learnina and 

Parameter 

CONST1 

CONST2 

CONST3 

CONST4 

CONST5 

I 

J 

L 

L1 

LARGE1 

LARGE2 

LARGE3 

LARGE4 

LTBL 

Default 
or 

Initial 
Value Definition 

0.200 

0.500 

0.800 

1.200 

1.500 

1 

1 

1 

1 

1 .O D+03 

1.0 D+O6 

1 .O D+09 

1 .o t12 

Input Constant (REAL*8). 

Input Constant (REAL*8). 

Input Constant (REAL*8). 

Input Constant (REAL'8). 

Input Constant (REAL*8). 

Index which Specifies the I-th Element Position in 
the Plant Input Vectors (Le., the Plant Control 
Vector) XA(I), XD(I,L), and XN(I) (INTEGER'4). 

Index which Specifies the J-th Element Position in 
the Plant Output Vectors (i.e., the P l a n t  
MeasuremenUState Vector) YA(J), YD(J,L), and 
YN(J) (INTEGER'4). 

Index which Specifies the L-th Data Set in the Data 
Sliding Window (INTEGER*4). 

Index which Ass igns the Analytic Modelling 
Function for a specific (L3,L2,L1) to  either the Plant 
Input Vector (Le., the Plant Control Vector) or the 
Plant Output Vector (Le., Plant MeasuremenVState 
Vector) (INTEGER*4). 

= 1 Specifies that the Model applies to an element of 
the Plant Input Vector (Le., the Plant Control 
Vector). 

= 2 Specifies that the Model applies to an element of 
the Plant Output Vector (i.e., Plant 
MeasuremenVState Vector). 

Input Constant with a large value (REAL*8). 

Input Constant with a large value (REAL*8). 

Input Constant with a large value (REAL*8). 

Input Constant with a large value (REAL*8). 

Index which Specifies the LTBL-th Data Set in the 
Plant Model Data Table when the "Actual Plant" is 
modelled using Routine TSTATE (INTEGER*4). 
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Input Group 2 [Continued) 

Overall Traiectorv ( Excludina Learnina and 
Control Trajectories) Propaaation Parameters 

Parameter 

Default 

Initial 
Value 

or 

Definition 

MULT 

SMALL1 

SMALL2 

SMALL3 

SMALL4 - TBLMAX 

0- TD(L) 

TlNlT 

TFlNL 

0- TTBL(LT6L) 

0 

1 

1.0 D-03 

1 .O D-06 

1.0 D-09 

1.0 D-12 

1 

O.OO0 

O.OO0 

Subsequent Case Flag. MULT is automatically reset 
to zero after each case is completed. It is necessary to 
input MULT equal to a positive integer value if it is 
desired to run a subsequent case with new NAMELIST 
CDATA values. (INTEGER.4). 

Total Number of Elements in the Plant Input Vector 
(i.e., the Plant Control Vector) if L1 = 1. or the Plant 
Output Vector (i.e., Plant MeasuremenVState Vector) 
if L1 = 2; NOT to be confused with NUDIM, the 
Dimension of the L2-th Subscript of the Analytic 
Trsjectwy Sythesis Arrays (!NEGER*4!. 

Input Constant with a small value (REAL.8). 

Input Constant with a small value (REAL.8). 

Input Constant with a small value (REAL*8). 

Input Constant with a small value (REAL.8). 

The Number of Data Sets (i.e., the Maximum Value 
that the index LTBL can have) in the Plant Model 
Data Table (INTEGER.4). 

1 I LTBL I TBLMAX 

Either the Absolute Time (TABS) or the Relative 
Time (TREL) as appropriately defined by TLTYPE or 
TCTYPE corresponding to the “Actual” (Reference) 
Plant defined in the L-th Data Set in the Data Sliding 
Window (REAL*8). 

Initial Absolute Time for the Entire Process (REAL.8). 

Final Absolute Time for the Entire Process (REAL*8). 

Either the Absolute Time (TABS) or the Relative 
Time (TREL) as appropriately defined by TLTYPE or 
TCTYPE conesponding to the “Actual” (Reference) 
Plant defined in the LTBL-th Data Set of the Plant 
Model Data Table used when the “Actual Planr is 
modelled using Routine TSTATE (REAL-). 
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Input Group 2 (Cant i nued) 

Control Traiectories) Propaaation Parameters 
Overall Traiectory ( Excludina Learnina and 

*** XD(I,L) 

*- XTBL( I ,LTBL) 

*- Y D( J , L) 

0- YTBL(J,LTBL) 

The I-th Element of the Input Vector (Le., the 
Control Vector) to the “Actual” (Reference) Plant 
defined in the L-th Data Set in the Data Sliding 
Window (REAL*8). 

The I-th Element of the Input Vector (Le., the 
Control Vector) to the “Actual” (Reference) Plant 
defined in the LTBL-th Data Set of the Plant Model 
Data Table used when the “Actual Plant” is modelled 
using Routine TSTATE (REAL*8). 

The J-th Element of the Output Vector (Le., the 
Measurement/State Vector) from the “Actual” 
(Reference) Plant defined in the L-th Data Set in the 
Data Sliding Window (REAL*8). 

The J-th Element of the Output Vector (i.e., the 
MeasurementIState Vector) from the “Actual” 
(Reference) Plant defined in the LTBL-th Data Set 
of the Plant Model Data Table used when the “Actual 
Plant“ is modelled using Routine TSTATE (REAL*8). 
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Input Grour, 3 

Learnina Traiectory Propaaation Parameters 

Parameter 

DLFREQ 

9 DLLGTH 

L 

LDEIAY 

NNLID 

STMODL 

TLlNlT 

TLFINL 

Default 
or 

Initial 
Value 

1 

-_I. 

10 

1 

0 

1 

1 

O.Oo0 

O.OO0 

Definition 

Data Set Read Frequency After the First Neural-Net 
(NN) CW(I,J,K)s Update During the Learning Trajectory 
(INTEGER.4). 

Window LengthBite During the Learned Trajectory; 
Number of Read Data Sets Contained in a Window 
During the Learned Trajectory (INTEGER.4). 

Index which Specifies the L-th Data Set in the Data 
Sliding Window (INTEGER*4). 

Neural-Net (NN) CW!l,J,K)s U p d a t e  
Frequencyflnhibit Flag for the Learning Trajectory 
(INTEGERt4). 
I 0 Do Update NN CW(I,J,K)s during the 

Learning Trajectory. 
> 0 Update NN CW(I,J,K)s every NNLID times during 

the Learning Trapctory. 

Specifies the "Actual" (Reference) Plant Model 
Option during the Learning Trajectory (INTEGER*4). 
= 1 Syntheslse the 'Actual" (Reference) Plant Model 

.b Combining Selected Individual Analytic 
dodels, that is Model the 'Actual" Plant by using 
Routine ASTATE. 

= 2 Define the 'Actual" (Reference) Plant Model 
directly from On-Line Test Data, that is Model the 
'ActuaV Plant by using Routine DSTATE. 

= 3 Define the uActual" (Reference) Plant Model from 
Stored Data Tables, that is Model the 'Actual" 
Plant by using Routine TSTATE. 

= 4 Define the Actual (Reference) Plant Model from a 
User Supplied Model, that is Model the 'Actual" 
Plant by using Routine USTATE. 

Either the Initial value of the Absolute Time (Le., 
TABS) or the Initial value of the Relative Time (Le., 
TREL) as appropriately defined by TLTYPE for the 
Learning Trajectory (REAL*8). 

Either the Final value of the Absolute Time (Le., 
TABS) or the Final value of the Relative Time (Le., 
TREL) as appropriately defined by TLTYPE for the 
Learning Trajectory (REAL*8). 
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Input Group 3 (Continued) 

Learnina Traiectorv Propaaation Parameters 

TLTYPE 0 Time Type Definition Flag for the Learning Trajectory 
(INTEGER*4). 
I 0 T = the Current Absolute Time (i.e., T = TABS), 

that is time is measured from the Start of the Entire 
Process (i.e., time is measured from that defined 
by TLINIT) 

> 0 T = the Current Relative Time (Le., T = TREL), 
that is time is measured from the Start of the 
Learning Trajectory (Le., time is measured from that 
defined by TLINIT). 

WTSNNL(L) 1.OOO Weighting Coefficient of the L-th Data Set in the 
Data Sliding Window during the Learning Trajectory 
( R EAL*8). 
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Input Group 4 

Controlled Traiectory Propaaation Parameters 

Parameter 

CDEIAY 

CVTID 

= DCFREQ 

DCLGTH 

ISTEPO 

L 

NNCID 

STMODC 

Default 
or 

Initial 
Value 

0 

1 

? 

10 

1 

1 

Definition 

Data Set Read Delay Counter Limit During the 
Controlled Trajectory (INTEGER.4). 

Plant Input Vector (Le., the Plant Control Vector) 
XA(0) Update Inhibit Flag for the Controlled 
Trajectory (INTEGER.4). 

I 0 Do U Update XA(0) during the Controlled 
Trajectory. 

> 0 Update XA(*) every CVTID times during the 
Controlkd Trajectoty. 

Date Se! Reed Fqllsncy A??er the Firs! Neural-Net 
(NN) CW(I,J,K)s Update During the Controlled 
Trajectory (INTEGER.4). 

Window LengWSii During the Controlled Trajectory; 
Number of Read Data Sets Contained in a Window 
During the Controlled Trajectory. If DCLGTH is Input 
Less Than or Equal to Zero, DCLGTH is Reset Equal 
To DUGTH (INTEGER.4). 

Step Reset Inhibit Flag for the Controlled Trajectory 
(INTEGER.4). 
= 0 and only if STMODC # 2 or 3, Reset STEP to 

ISTEP = 1 at the start of the Controlled Trajecto~y. 
# 0 or if STMODC = 2 or 3, Reset STEP to 

STEP = ISTEP + ISTEPO at the start of the 
Controlled Trajectory. 

Index which Specifies the L-th Data Set in the Data 
Sliding Window (INTEGEW4). 

Neural-Net (NN) CW(I,J,K)s Update  
Frequencyfinhibit Flag for the Controlled Trajectory 
(INTEGER+4). 
I 0 Do Update NN CW(I,J,K)s during the 

Controlled Trajectory. 
> 0 Update NN CW(I,J,K)s every NNLID times during 

the Controlled Trajectory. 

Specifies the "Actual" (Reference) Plant Model 
Option during the Controlled Trajectory (INTEGER.4). 
= 1 Synthesise the "Actual" (Reference) Plant Model 

by Combining Selected Individual Analytic 
Models, that is Model the "Actual" Plant by using 
Routine ASTATE. 
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Input Group 4 (Continued) 

Controlled Traiectorv Propaaation Parameters 

STMODC 1 

TClNlT O.OO0 

TCFINL O.OO0 

TCSTEP 1 .ooo 

TCTYPE 0 

UPDATE 1 

Definition 

(Continued) 
= 2 Define the "Actual" (Reference) Plant Model 

directly from On-Line Test Data, that is Model the 
"Actual" Plant by using Routine DSTATE. 

= 3 Define the "Actual" (Reference) Plant Model from 
Stored Data Tables, that is Model the "Actual" 
Plant by using Routine TSTATE. 

= 4 Define the Actual (Reference) Plant Model from a 
User Supplied Model, that is Model the "Actual" 
Plant by using Routine USTATE. 

Either the Initial value of the Absolute Time (Le., 
TABS) or the Initial value of the Relative Time (Le., 
TREL) as appropriately defined by TCTYPE for the 
Controlled Trajectory (REAL*8). 

Either the Final value of the Absolute Time (i.e., 
TABS) or the Final value of the Relative Time (Le., 
TREL) as appropriately defined by TCTYPE for the 
Controlled Trajectory (REAL*8). 

Time Step for the Controlled Trajectory (REAL*8). 

Time Type Definition Flag for the Learning Trajectory 
(INTEG ER*4). 
I 0 T = the Current Absolute Time (i.e., T = TABS), 

that is time is measured from the Start of the Entire 
Process (i.e., time is measured from that defined 
by TLINIT) 

> 0 T = the Current Relative Time (i.e., T = TREL), 
that is time is measured from the Start of the 
Controlled Trajectory (i.e., time is measured from 
that defined by TCINIT). 

Sliding Window First Data Set Update Flag for the 
Controlled Trajectory (INTEGER*4). 
I 0 Do Update the First Data Set (L = 1) of the 

Sliding Window Table (i.e., XD(I,l) and YD(J,l)) 
to those determined by the Current Control 
Optimisation (i.e., XN(I) and YN(J)). 

> 0 Update the First Data Set (L = 1) of the Sliding 
Window Table (i.e., XD(I,l) and YD(J,l)) to those 
determined by the Current Control Optimisation 
(i.e., XN(I) and YN(J)). 
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Input Group 4 (Continued) 

Controlled Traiectory Propaaation Parameters 

Default 

Initial 
Parameter Value Definition 

or 

^_I - 
WTSNNC(L) 1.OOO Weighting Coefficient of the L-th Data Set in the 

Data Sliding Window during the Controlled Trajectory 
(REAL.8). 
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Input Group 5 

Neural Network Parameters 

Default 
or 

Initial 
Value ..-._... -...----___ Parameter 

~ _--. 

AN(J,K) 0.500 

BN(J,K) 0.500 

CN(J,K) 1 .Ooo 

CW( I, J,K) 1 .OOO 

DN(J,K) -1 .OD+06 

1 

1 

K 1 

NFUNCT(J,K) 0 

Definition 

A Constant of the Pass-Through Function (Node 
Filter) Model at the J-th Exit (Destination) 
Position for the K-th Neural-Net Layer (REAL.8). 

..-..--_.I.....---.-_-- I-___-.--...- .... ~ _....... - ._I__ ~ _._.._ _.--._.I___-___._- 

A Constant of the Pass-Through Function (Node 
Filter) Model at the J-th Exit (Destination) 
Position for the K-th Neural-Net Layer (REAL*8). 

A Constant of the Pass-Through Function (Node 
Filter) Model at the J-th Exit (Destination) 
Position for the K-th Neural-Net Layer (REAL*8). 

Neural-Si nal Weighting Coefficient associated 

Neural-Net Layer from the I-th Entry (Origin) 
Position directed to the J-th Exit (Destination) 
Position (REAL*8). 

with the k! ntry Signal XNN(I,J,K) to the K- th  

A Constant of the Pass-Through Function (Node 
Filter) Model at the J-th Exit (Destination) 
Position for the K-th Neural-Net Layer (REAL*8). 

Index which Specifies the I-th Element Position in 
the Origin Vector for the Specific Neural-Network 
Layer specified by the index K (INTEGER*4). 

Index which Specifies the J-th Element Position 
in the Destination Vector for the Specific Neural- 
Network Layer specified by the index K 
(I NTEGER*4). 

Index which Specifies the K-th Specific Layer in 
the Neural-Network (INTEGER*4). 

Specifies the Pass-Through Function (Node 
Filter) Model at the J-th Exit (Destination) 
P o s i t i o n  for the K-th Neural-Net Layer 
(INTEG ER*4). 

= 0 Specifies the No-Pass (i.e., the Constant 
Function) Node Filter Function defined by 
Routine PFNCTOO. 

= 1 Specifies the Direct-Pass (i.e., the Linear 
Function) Node Filter Function defined by 
Routine PFNCTO1 . 

= 2 Specifies the Hyperbolic Tangent (Le., the 
Threshold Function) Node Filter Function 
defined by Routine PFNCTOZ. 
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Innut Group 5 (Continued) 

Neural Network Parameters 

Default 
or 

lnitiil 
Value Definition - Parameter 

N FUNCT( J , K) 0 (Continued) 
= 3 Specifies the First Derivative of the 

Hyperbolic Tangent (Le., the P u l s e  
function) Node Filter Function defined by 
Routine PFNCTa3. 

NI(K) 

NJ(K) 

NK 

XNO(J,K) 

YNO(J,K) 

3 

1 

Total Number of Elements in the Origin Vector 
(Le., the Total Number of Origin Positions) for the 
Specific Neural-Network Layer specified by the index 
K (INTEGER.4). 

Total Number of Elements in the Destination 

Positions) for the Specific Neural-Network Layer 
specified by the index K (INTEGER.4). 

.. vectof (Le., ihe Totat Nuiiibei trf Zesti i~~tioi~ 

2 Total Number of Layers (Le., the 1.u.b. of the index 
K) in the Neural-Network (INTEGER.4). 

O.OO0 The Input Signal UNN(J,K) Horizontal Translation 
Constant for the Ori in of the Pass-Through 

(Destination) Position for the K-th Neural-Net 
Layer (REAL.8). 

F u n c t i o n  (Node F ilter) at the J-th Exit 

O.OO0 The Exit Signal YNN(J,K) Vertical Translation 
Constant for the Ori in of the Pass-Through 

Exit 
(Destination) Position for the K-th Neural-Net 
Layer (REAL*8). 

F u n c t i o n  (Node F ilter) at the J-th 
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Input Group 6 

Analvtic Traiectorv Svnthesis Parameters 

ALPHA(L3,LzIL1) 1 .000 

0.500 

O.OO0 

C(L3L2Ll) 0.250 

Cl(L3L2rLl) O.OO0 

Definition 

A Constant of the Analytic Trajectory Modelling 
Functions. (REAL*8). 

A Constant of the Random Uniform Distribution 
Analytic Trajectory Modelling Function when this 
function is called as a Primary Analytic Model. 
(REAL*8). 

A Constant of the Random Uniform Distribution 
Analytic Trajectory Modelling Function when this 
function is called to Randomise an Individual 
Primary Analytic Model. (REAL*8). 

A Constant of the Random Uniform Distribution 
Analytic Trajectory Modelling Function when this 
function is called to Randomise the Combined 
Primary Analytic Models. (REAL*8). 

The Convergence/Diver ence Constant of the 
Exponential Part of the nveloped Sinusoidal 
Analytic Trajectory Modelling Function (REAL*8). 

A Constant of the Analytic Trajectory Modelling 
Functions. (REAL*8). 

A Constant of the Random Uniform Distribution 
Analytic Trajectory Modelling Function when this 
function is called as a Primary Analytic Model. 
(R EAL*8). 

A Constant of the Random Uniform Distribution 
Analytic Trajectory Modelling Function when this 
function is called to Randomise an Individual 
Primary Analytic Model. (REAL*8). 

A Constant of the Random Uniform Distribution 
Analytic Trajectory Modelling Function when this 
function is called to Randomise the Combined 
Primary Analytic Models. (REAL*8). 

A Constant of the Analytic Trajectory Modelling 
Functions. (REAL*8). 

A Constant of the Random Uniform Distribution 
Analytic Trajectory Modelling Function when this 
function is called as a Primary Analytic Model. 
(REAL'8). 
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InDut Group 6 (Continued) 

I 

Parameter 

Analvtic Traiectory Sv nthesis Parameters 

Default 
or 

Initial 
Value 

O.Oo0 

O.OO0 

-1 .OD- 

0.m 

O.OO0 

O.OO0 

IFUNCT(L3,L2,L1) 0 

- Definition 

A Constant of the Random Uniform Distribution 
Analytic Trajectory Modelling Function when this 
function is called to Randomise an Individual 
Primary Analytic Yodel. (REAL*8). 

A Constant of the Random Uniform Distribution 
Analytic Trajectory Modelling Function when this 
function is called to Randomise the Combined 
Primary Analytic Models. (REAL*8). 

A Constant of the Analytic Trajectory Modelling 
Functions. (REAL*8). 

A Cmstan! d the Random Unifarm Distribution 
Analytic Trajectory Modelling Function when this 
function is called as a Primary Analytic Model. 
(REAL*8). 

A Constant of the Random Uniform Distribution 
Analytic Trajectory Modelling Function when this 
function is called to Randomise an Individual 
Primary Analytic Model. (REAL*8). 

A Constant of the Random Uniform Distribution 
Analytic Trajectory Modelling Function when this 
function is called to Randomise the Combined 
Primary Analytic Models. (REALI8). 

Specifies the Analytic Function Model for a 
Specific (L3,Lz1L1) (IMEGER*4).. 

= o  

= 1  

= 2  

= 3  

= 4  

= 5  

= 6  

= 7  

Specifies the Random Uniform Distribution 
Function defined by Routine ASTATRAN. 
Specifies the Linear Function (i.e-, the Ramp 
Function) defined by Routine ASTAlEOl . 
Specifies the Serpentine Curve Function 
defined by Routine ASTATE02. 
Specifies the Witch of Agnesi Function 
defined by Routine ASTATEO3. 
Specifies the Inverted Witch of Agnesi 
Function defined by Routine ASTATEM. 
Specifies the Enveloped Sinusoidal Function 
defined by Routine ASTATEOS. 
Specifies the Hyperbolic Tangent Function 
(i.e., the Threshold Function) defined by 
Routine ASTATEM. 
Specifies the First Derivative of the 
HvDerbolic Tanaent Function (Le.. the 
Pu lse  Functiorij defined by Routine 
ASTATEO’I. 
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Input Group 6 (Continued) 

Analvtic Traiectorv Svnthesis Parameters 

Def au It 
or 

Initial 
Value Definition ____-__.___.._ ~ __lll____________.--.--I---.----------I_- ~ __-_I_--.-._.--. ~ 

Parameter 

ISEED1 (4,L2,L1) 78985723 The Seed required for the First Call to the VAWVMS 
S stem Subroutine RAN from Subroutine 
AgTATRAN when ASTATRAN is called as a Primary 
Analytic Model. This seed is updated automatically 
upon exit from RAN. Although there are no 
restrictions on the value of this seed other than that it 
is an INTEGER*4 variable, the best results are 
obtained when it is initially input as a large odd 
integer (INTEGER*4). 

_-_. 

ISEED2(L3,L2,Ll) 81692875 The Seed required for the First Call to the VAWVMS 
System Subroutine RAN from Subroutine 
ASTATRAN when ASTATRAN is called to 
Randomise an Individual Primary Analytic Model. 
This seed is updated automatically upon exit from 
RAN. Although there are no restrictions on the value 
of this seed other than that it is an INTEGER*4 
variable, the best results are obtained when it is 
initially input as a large odd integer (INTEGER*4). 

ISEED3(L2,L1) 72919329 The Seed required for the First Call to the VAWVMS 
System Subroutine RAN from Subroutine 
ASTATRAN when ASTATRAN is called to 
Randomise the Combined Primary Analytic Models. 
This seed is updated automatically upon exit from 
RAN. Although there are no restrictions on the value 
of this seed other than that it is an INTEGER*4 
variable, the best results are obtained when it is 
initially input as a large odd integer (INTEGERf4). 

JSEED1(L3,L2,L1) 95428381 The Seed required for the Second Call to the 
VAXNMS System Subroutine RAN from Subroutine 
ASTATRAN when ASTATRAN is called as a Primary 
Analytic Model. This seed is updated automatically 
upon exit from RAN. Although there are no 
restrictions on the value of this seed other than that it 
is an INTEGER*4 variable, the best results are 
obtained when it is initially input as a large odd 
integer (INTEGER*4). 

JSEED2(L3,L2,Ll) 68377297 The Seed required for the Second Call to the 
VAXNMS System Subroutine RAN from Subroutine 
ASTATRAN when ASTATRAN is called to 
Randomise an Individual Primary Analytic Model. 
This seed is updated automatically upon exit from 
RAN. Although there are no restrictions on the value 
of this seed other than that it is an INTEGER*4 
variable, the best results are obtained when it is 
initially input as a large odd integer (INTEGER*4). 
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Input G rom 6 (Continued) 

Analvtic Traiectow Sv nthesis Parameters 

Default 

Initial 
Parameter Value 

or 

JSEED3(Lz,L1) 89672847 

1 

L2 

4 

1 

Definition 

The Seed required for the Second Call to the 
VAWVMS System Subroutine RAN from Subroutine 
ASTATRAN when ASTATRAN is called to 
Randomise the Combined Primary Analytic Models. 
This seed is updated automatically upon exit from 
RAN. Although there are no restrictions on the value 
of this seed other than that it is an INTEGER*4 
variable, the best results are obtained when it is 
initially input as a large odd integer (INTEGERf4). 

Index which Assigns the Analytic Modelling 
Function for a specific (L3,L2,L1) to either the Plant 
Input Vector (i.e., the Plant Control Vector) or the 
Pkn? Qutp!! V-Q~ (i e , Plant MeasuremenVState 
Vector) (INTEGER*4). 

= 1 Specdies that me Modei appiies to an eiement 
of the Plant Input Vector (Le., the Plant 
Control Vector). 

= 2 Speafms that the Model applies to an element 
of the Plant Output Vector (i.e., Plant 
MeasummenVState Vector). 

Index which Specifies the Element Number for the 
Plant Input Vector (i.e., the Plant Control Vector) if 
L1 = 1, or the Plant Output Vector (Le., Plant 
MeasuremenVState Vector) if L1 = 2 (INTEGERf4). 

Index which Specifies the Element Number of the 
Analytic Modelling Function for a specific (L2,Ll) 
(INTEGER*4). 

Total Number of Elements in the Plant Input 
Vector (i.e., the Plant Control Vector) if L1 = 1, or 
the Plant Output Vector (i.e., Plant 
MeasuremenVState Vector) if L1 = 2; NOT to be 
confused with NWDIM, the Dimension of the L2-th 
Subscript of the Analytic Trajectory Synthesis Arrays 
(INTEGER*4). 

Total Number of Analytic Modelling Functions 
for a specific (L2,Ll); NOT to be confused with 
NL3DIM, the Dimension of the L3-th Subscript of the 
Analytic Trajectory Synthesis Arrays (INTEGEFP4). 

Harmonic Number of the Primary Frequency (i.e., 
the Coefficient of the Primary Frequency) of the 
Sinusoidal Part of the Enveloped Sinusoidal 
Analybc Trajectory Modelling Function (REAL*8). 
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Input Group 6 (Continued) 

Analvtic Traiectorv Svnthesis Parameters 

PERIOD(L3,L2,L1) 1 . 0 ~ 1 0 + ~ ~  

PHASE(L3,L2,L1) 0.000 

0.000 

O.OO0 

O.OO0 

0.000 

O.OO0 

Definition 

2x times the Primary Fre uency (or the Period if 

Enveloped Sinusoidal Analytic Trajectory Modelling 
Function (REAL*8). 

NN(L3,L2,L1) 2 I O * )  of the % inusoidal Part of the 

Period of the Analytic Trajectory Modelling 
Function defined for a specific (L3,L2.L1) (REAL*8). 

Either the Absolute Time (TABS) or the Relative 
Time (TREL) as appropriately defined by TLTYPE or 
TCTYPE of the Start of a Cycle of the Analytic 
Modelling Function defined for a specific (L3,L2,L1) 
(REAL*8). 

The Phase Angle of the Sinusoidal Part of the 
Enveloped Sinusoidal Analytic Trajectory Modelling 
Function (REAL*8). 

The Phase Angle of the Exponential Part of the 
Enveloped Sinusoidal Analytic Trajectory Modelling 
Function (REAL*8). 

Either the Absolute Time (TABS) or the Relative 
Time (TREL) as appropriately defined by TLTYPE or 
TCTYPE of the Origin of the Analytic Trajectory 
Modelling Function defined for a specific (L3,L2,L1) 
(REAL*8). 

A Constant added to the Analytic Trajectory 
Modelling Function defined for a specific (L3,L2,L1) 
(REAL*8). 

A Constant added to the Random Uniform 
Distribution Analytic Trajectory Modelling Function 
defined for a specific (L3,L2,L1) when this function is 
called as a Primary Analytic Model. (REAL*8). 

A Constant added to the Random Uniform 
Distribution Analytic Trajectory Modelling Function 
defined for a specific (L3,L2,L1) when this function is 
called to Randomise an Individual Primary 
Analytic Model. (REAL*8). 

A Constant added to the Random Uniform 
Distribution Analytic Trajectory Modelling Function 
defined for a specific (L3,L2.L1) when this function is 
called to Randomise the Combined Primary 
Analytic Models. (REAL.8). 
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I 

Neural-Net Optimisation Parameters Durina the 
Learning Traiectory 

Default 
or 

Initial 
Parameter Value Definition 

1 Index which Specifies the I-th Element Position in 
the Origin Vector for the Specific Neural-Network 
Layer specified by the index "K" (INTEGERI4). 

I JKCVL( I ,  J,K) 0 Control Vector Identification Flag. This flag 
vector specifies whether or not the Neural-Signal 
Weighting Coefficient (i.e., CW(I,J,K)) associated 
with the Entry Signal XNN(1,J.K) to the K-th Neural- 
Net Layer from the I-th Entry (Ori in) Position 
directed to the J-th Exit (Destination! Position will 
be an element in the Optimisation Control Vector 
CV(*) (INTEGER*4). 

-< 0 CW(1,J.K) IS NOT an Element of CV(*). 

> 0 CW(1,J.K) IS an Element of CV(*). 

J 

K 

1 Index which Specifies the J-th Element Position 
in the Destination Vector for the Specific Neural- 
Network Layer specified by the index "K" 
(I NTEG ER*4). 

1 Index which Specifies the K-th Specific Layer in 
the Neural-Network (INTEGER*4). 

SCVNNL(I,J,K) 1.OOO The Vector of Scaling Coefficients for the 
elements of the Neural-Si nal  Weighting 

Optimisation Process (REAL* 8). 
Coefficient Matrix (i.e., CW(I, 9 ,K)) required by the 

End Conditions Vector SubGroq~  

J 1 Index which Specifies the J-th Element Position 
in the Plant Output Vectors (Le., the Plant  
YeasuremenUState Vector) YA(J), YD(J,L), and 
YN( J) (INTEGERc4). 

vector specifies whether or not [YN(J) - YA(J) 
JJECL(J) 0 End Conditions ldentif ication Flag. This fla 

(i.e., the difference between the J-th Elements o 
the Measurement/State Vectors) will be an 
element in the Optimisation End Conditions Vector 
EC(*) and if WTNNL(J)*[YN(J) - YA(J)]Z will be 
a term in the Performance Index P l N D X  
(INTEGER*4). 

3 

Appendix A: Parameters - 21 



Input Group 7 (Continued) 

NeuraI.Net Optimisation Parameters Durinq the 
Learnina Traiectorv 

Def au It 
or 

Initial 
Value Definition _-____-___- _____-_---- ~ ~ ~ 

Parameter __-_ 
d Co nditions Vecto r Sub4 r o w  (CO ntinued) 

JJECL(J) (Continued) 

I 0 [YN(J) - YA(J)] IS NOT an Element of EC(*) 
and WTNNL*[YN(J) - YA(J)I2 IS NOT a 
term in PINDX. 
[YN(J) - YA(J)] IS an Elem nt of EC(*) and 
wTNNL*[YN(J) - YA(J$ IS a term in 
PINDX. 

> 0 

WTNNL(J) 1.OOO Weight ing Coef f i c ien t  element in the 
WTNNL(J)*[YN(J) - YA(J)]* term in the 
Performance Index PINDX (REAL* 8). 

Constraint Vector Sub-G rOUD 

AMAXNNL(I,J,K) 100.00 

AMINNNL(I,J,K) -100.00 

I 1 

ICONNNL(I,J,K) 0 

The Least Upper Bounds (1.u.b.) of the Control 
Vector Elements (REAL* 8). 

CW(I,J,K) I AMAXNNL(I,J,K) 

The Greatest Least Bounds (g.1.b.) of the Control 
Vector Elements (REAL* 8). 

AMINNNL(I,J,K) I CW(I,J,K) 

Index which Specifies the I-th Element Position in 
the Origin Vector for the Specific Neural-Network 
Layer specified by the index "K" (INTEGER*4). 

Constraint Function Vector Identification Flag. 
This flag vector specifies whether or not the Neural- 
Signal Weighting Coefficient (i.e., CW(I,J,K)) 
associated with the Entry Si nal XNN(I,J,K) to the 

Origin) Position directed to the J-th Exit 
Destination) Position will be constrained by an 

element of the Constraint Function Vector CON ( 0 )  

rentlv NOT an oDt ion (INTEGER*4). Cur 
I 0 CW(I,J,K) IS NOT Constrained by an 

> 0 CW(1,J.K) IS Constrained by an element of 

K-th Neural-Net Layer 7 rom the I-th Entry 

I 
element of CON (0 ) .  

CON(*). 
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Input Group 7 (Continued) 

Neural-Net Optimisation Parameters Durina the 
Learnina Traiectory 

Def au I t 
or 

Initial 
Parameter Value Definition 

Constraint Vector S u b - G r ~ u ~  [Continued) 

J 

K 

1 Index which Specifies the J-th Element Position 
in the Destination Vector for the Specific Neural- 
Network Layer specified by the index "K" 
(INTEG ER*4). 

Index which Specifies the K-th Specific Layer in 
the Neural-Network (INTEGERf4). 

1 

arameters Sub-Groug 

IOPTNNL 0 '  Gradient Evaluation Option Specification Flag 
(INTEGERf4). 
5 0 No Neural-Net Update/Optimisation. 
= 1 The Gradients required during the Neural-Net 

Update/Optimisation Process are evaluated 
using a Finite Differences Method. 
The Gradients required during the Neural-Net 
Update/Optimisation Process are evaluated 
using an Analytic Method. Current Iv NOT 
gn m i o n  

= 2 

MITNNNL 

OUTNNL 

200 The Maximum Number of Optimisation lterat-ions 
allowed before the Optimisation Process is 
terminated. (INTEGER.4). 

0 The 0 p t  imisat ion  I t e ra t i on  0 ut put bvel 
Specification Flag. (INTEGERf4). 
= 0 No Optimisation Iteration Information is 

written. 
= 1  Only the Final  Optimisation Iteration 

Convergence Information is written. 
= 2 One Line of Intermediate Optimisation 

Iteration Information is written for Each 
Iteration. 

= 3 Detai led Intermediate Optimisation 
Iteration Information is written for Each 
Iteration. 
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Input Group 8 

Neural.Net Optimisation Parameters Durina the 
Controlled Traiectory 

I 

I JKCVC( I ,  J,K) 

J 

K 

SCVNNC( I, J,K) 

1 Index which Specifies the I-th Element Position in 
the Origin Vector for the Specific Neural-Network 
Layer specified by the index "K" (INTEGER*4). 

0 Control Vector Identification Flag. This flag 
vector specifies whether or not the Neural-Signal 
Weighting Coefficient (Le., CW(I,J,K)) associated 
with the Entry Signal XNN(I,J,K) to the K-th Neural- 
Net Layer from the I-th Entry (Ori in) Position 
directed to the J-th Exit (Destination7 Position will 
be an element in the Optimisation Control Vector 
CV(.) (INTEGERI4). 

I 0 CW(1,J.K) IS NOT an Element of CV(0). 

> 0 CW(I,J,K) IS an Element of CV(0). 

1 Index which Specifies the J-th Element Position 
in the Destination Vector for the Specific Neural- 
Network Layer specified by the index "K" 
(INTEG ER*4). 

Index which Specifies the K-th Specific Layer in 
the Neural-Network (INTEGER*4). 

1 

l.OO0 The Vector of Scaling Coefficients for the 
elements of the Neural-Signal Weighting 
Coefficient Matrix (i.e., CW(I,J,K)) required by the 
Optimisation Process (REAL* 8). 

End Conditions Vector Sub-Group 

J 1 Index which Specifies the J-th Element Position 
in the Plant Output Vectors (i.e., the Plant  
MeasurementBtate Vector) YA(J), YD(J,L), and 
YN(J) (INTEGER*4). 

JJECC(J) 0 End Conditions Identification Flag. This fla 
vector specifies whether or not [YN(J) - YA(J)! 
(i.e., the difference between the J-th Elements o 
the MeasurementlState Vectors) will be an 
element in the Optimisation End Conditions Vector 
EC(0) and if WTNNC(J)*[YN(J) - YA(J) will be 
a term in the Performance Index !INOX 
(INTEGER.4). 
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Input Group 8 (Continued) 

Neura1.Net Optimisation Parameters Durina the 
Controlled Traiectory 

Default 

Initial 
or 

Parameter Value Definition - 
End Conditrons Vector Sub-Groun (Comnued) 

JJECC(J) (Continued) 

I 0 [YN(J) - YA(J)] IS NOT an Element of EC(*) 
and WTNNC*[YN(J) - YA(J)I2 IS NOT a 
term in PINDX. 
[YN(J) - YA(J)] IS an Element of EC(*) and 
WTNNC*[YN(J) - YA(J)]* IS a term in 
PINDX. 

> 0 

wTNNC(J) 1.o00 Weighting Coef f i c ien t  element in the 
WTNNC(J)*[YN(J) - YA(J)]* term in the 
Performance Index PINDX (REAL* 8). 

int Vector Sub-Grwp 

AMAXNNC(I,J,K) 100.00 The Least Upper Bounds (1.u.b.) of the Control 
Vector Elements (REAL* 8). 

CW(I.J,K) I AMAXNNC(I,J,K) 

AMINNNC(1,J.K) -100.00 The Greatest Least Bounds (g.1.b.) of the Control 
Vector Elements (REAL* 8). 

AMINNNC(1,J.K) I CW(I,J,K) 

I 1 Index which Specifies the I-th Element Position in 
the Origin Vector for the Specific Neural-Network 
Layer specified by the index "K" (INTEGER*4). 

ICONNNC(1,J.K) 0 Constraint Function Vector Identification Flag. 
This flag vector specifies whether or not the Neural- 
Signal Weighting Coefficient (Le., CW(I,J,K)) 
associated with the Entry Si nal XNN(I,J,K) to the 

(Origin) Position directed to the J-th Exit 
(Destination) Position will be constrained by an 
element of the Constraint Function Vector CON (*) 
(INTEGERf4). Current Iv NOT an option 

I 0 CW(1,J.K) IS NOT Constrained by an 

> 0 CW(1,J.K) IS Constrained by an element of 

K-th Neural-Net Layer 3 rom the I-th Entry 

element of CON (0 ) .  

CON(*). 
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Input Group 8 (Continued) 

Neural-Net Optimisation Parameters Durina the 
Controlled Traiectorv 

Constra int Vector Sub-Group E o  ntinued) 

J 

K 

1 Index which Specifies the J-th Element Position 
in the Destination Vector for the Specific Neural- 
Network Layer specified by the index ' K  
(INTEGER*4). 

Index which Specifies the K-th Specific Layer in 
the Neural-Network (INTEGEW4). 

1 

ODtimisation Parameters Sub-G r o w  

IOPTNNC 0. Gradient Evaluation Option Specification Flag 
(INTEG ER*4). 

I 0 No Neural-Net Update/Optimisation. 
= 1 The Gradients required during the Neural-Net 

Update/Optimisation Process are evaluated 
using a Finite Differences Method. 
The Gradients required during the Neural-Net 
Update/Optimisation Process are evaluated 

.using an Analytic Method. Currentlv NOT 
an ontion 

= 2 

MITNNNC 

OUTNNC 

200 The Maximum Number of Optimisation Iterations 
allowed before the Optimisation Process is 
terminated. (INTEGER'4). 

0 The Opt imisat ion I t e ra t i on  Output Level 
Specification Flag. (INTEGER*4). 

= 0 No Optimisation Iteration Information is 
written. 

= 1 Only the F ina l  Optimisation Iteration 
Convergence Information is written. 

= 2 One Line of Intermediate Optimisation 
Iteration Information is written for Each 
Iteration. 

= 3 Deta i led Intermediate Optimisation 
Iteration Information is written for Each 
Iteration. 
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InDut GrouD 9 

I 

Control Optimisation Parameters Durina the 
Controlled Traiectorv 

Default 
or 

Initial 
Parameter Value Definition 

1 Index which Specifies the I-th Element Position in 
the Plant Input Vectors (i.e., the Plant Control 
Vector) =(I), XD(I,L), and XN(1) (INTEGER*4). 

ICV(I) 0 Control Vector Identification Flag. This flag 
vector specifies whether or not the I-th Element of 
the ActuaWorking Control Vector (e.g., XA(I)) 
will be an element in the Optimisation Control Vector 
CV (0 )  (INTEGER*4). 

I 0 

> 0 XA(I) ISan Element of CV(0). 

XA(I) IS NOT an Element of Cvioj .  

SCVC(l) 1.OOO The Vector of Scalin Coefficients for the 
elements of the Actua & orking Control Vector 

XA(I)) required by the Optimisation Process [%k* 8). 

End Condmo ns Vector Suffi rouD .. 
J 1 Index which Specifies the J-th Element Position 

in the Plant Output Vectors (Le., the Plant 
MeasurementlState Vector) YA(J), YD(J,L), and 
Y N(J) (INTEGER*4). 

JEC(J) 0 End Conditions Identification Flag. This flag 
vector specifies whether or not the J-th Element of 
the ActuaVWorking MeasurementEtate Vector 
(i.e., Y A ( J ) )  will be an element in the 
Optimisation End Conditions Vector ECe) and if 
WTC(J)*[YA(J) 2 will be a term in the Performance 
Index PINDX I INTEGER.4). 

I 0 YA(J) IS NOT an Element of EC(0) and 

> 0 YA(J) IS an Element of EC(0) and 

WTC*[YA(J)J.' IS NOT a term in PINDX. 

WTC*[YA(J)]* IS a term in PINDX. 

WTC(J) 1.OOO Weight ing Coef f i c ien t  element in the 
WTC(J)*[YA(J)]* term in the Performance Index 
PINDX (REAL* 8). 
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Input Group 9 (Continued) 

Control Optimisation Parameters Durina the 
Controlled Traiectorv 

Default 
or 

Initial 
Value Definition 

-__.-I ~ ~ _._.. __ Parameter 
-..----I.-.-.-.. 

Constraint Vector Sub-G rouD 

10.00 AMAXC( I) The Least Upper Bounds (1.u.b.) of the Control 
Vector Elements (REAL* 8). 

XA(I) I AMAXC(I) 

AMINC(1) -10.00 The Greatest Least Bounds (g.1.b.) of the Control 
Vector Elements (REAL* 8). 

AMINC(1) I XA(I) 

I 

ICONC(1) 

SMAXC(I) 

1 Index which Specifies the I-th Element Position in 
the Plant Input Vectors (i.e., the Plant Control 
Vector) XA(I), XD(I,L), and XN(I) (INTEGER*4). 

0 Constraint Function Vector Identification Flag. 
This flag vector specifies whether or not the I-th 
Element of the ActualMlorking Control Vector 
(e.g., XA(I)) will be constrained by an element of 
the Constraint Function Vector CON(*) 
INTEGER*4). 

< 0 XA(I) IS Constrained in an element of 
CON(*). Currentlv NOT an option 

I 0 XA(I) IS NOT Constrained in an element of 
CON(*). 

> 0 XA(I) and XA(IARG) ARE Constrained in 
an element of CON ( 0 )  according to:. 

[XA(l)]2 + [XA(IARG)]2 I [SMAXC(l)]2 
where: IARG = ICONC(1) 

10.00 The Least Upper Bound (1.u.b.) Constraint  
Vector for the sum of the squares of t w o  
elements of the ActuaVWorking Control Vector 
(see ICONC(1)) (REAL* 8). 

[XA(l)]2 + [XA(IARG)]2 I [SMAXC(1)]2 
where: IARG = ICONC(1) 
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Input Group 9 (Continued) 

Control Optimisation Parameters Durina the 
Lea rni na Traiectorv 

Default 

Initial 
or 

Parameter Value Definition 

IOPTC 0 Gradient Evaluation Option Specification Flag 
(INTEGER.4). 

I 0 No Control Optimisation. 
= 1 The Gradients required during the Control 

Optimisation Process are evaluated using a 
Finite D i r e n c e s  Method. 

= 2 The Gradients required during the Control 
Optimisation Process are evaluated using an 
Am!ytk  h ? h o d .  Currentlv NOT an 
S a 2 Q  

MITNC 

OUTC 

200 The Maximum Number of Optimisation Iterations 
allowed before the Optimisation Process is 
terminated. (INTEGER*4). 

0 The 0 pt imisat ion I t  erat ion 0 ut put kvel 
Specification Flag. (INTEGER*4). 
= 0 No Optimisation Iteration Information is 

written. 
= 1 Only the Final Optimisation Iteration 

Convergence Information is written. 
= 2 One Line of Intermediate Optimisation 

Iteration Information is written for Each 
Iteration. 

= 3 Detailed Intermediate Optimisation 
Iteration Information is written for Each 
Iteration. 
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lnternallv Set Parameters 
in the 

OPTIMNN Code 

-Denotes Data Defined by NAMELIST CDATA Input Data read from Subroutine 
INIT, or by Directly Read On-Line Test Data, or by Internally 
Computed Data. This Data defines the “Actual” (Reference) Plant Input 
Vector andlor Output Vector at Specified Trajectory Time Points. 
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lnternallv Set Parameters Grour, A 

lnternallv Set Parameters for Traiectory Propaaation 

Default 
or 

Initial 
Parameter Value Definition ----- 

CVUP 

DATAR 

DELAY 

DFREQ 

DFREQO 

DLGTH 

I 

Plant Input Vector (Le., the Plant Control Vector) 
XA(I) Update Frequency Flag for the Controlled 
Trajectory (INTEGER*4). 

= 0 Update the Plant Input Vector =(I). 
# 0 Do W Update the Plant Input Vector XA(I). 

CVUP = JMOD(ISTEP-1, CVTID) 

Data Set Read Flag (INTEGER*4). 

= 0 Read Data Set if and only if DELAY .e LSTEP. 
f 6 & ‘Not Fiead Ea.& sei* 

DATAR = JMOD(ISTEP-1, DFREQ) 

&lay Count to: Data Set Read (!NTEGER*4). 
= LDELAY During the Learning Trajectory. 
= COELAY During the Controlled Trajectory. 
1 LSTEP Do a Read Data Set. 
< LSTEP Read a Data Set if and only if OATAR = 0. 

Data Set Read Frequency After the First Neural- 
Net (NN) CW(I,J,K)s Update (INTEGER.4). 
= DLFREQ During the Learning Trajectory. 
= DCFREQ During the Controlled Trajectory. 

Data Set Read Inhibit Flag for the First Read 
Attempt during the Learning Phase at the Start of the 
Controlled Trajectory (IPHASE = 5) (INTEGERf4). 
Currentlv NOT an option 
= 0 Do Not Inhibit Data Set Read. 
f 0 Inhibit Data Set Read. 

Data Sliding Window Length/Size (i.e., the Maximum 
Number of Data Sets Contained in a Data Sliding 
Window ( I  NTEG ER*4). 

= DLLGTH During the Learning Trajectory. 
= DCLGTH During the Controlled Trajectory. 

1 Index which Specifies the I-th Element Position in 
the Plant Input Vectors (i.e., the Plant Control 
Vector) XA(I), XD(I,L), and XN(I) (INTEGER*4). 
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lnternallv Set Parameters Gram A [Continued) 

lnternallv Set Parameters for Traiectorv Propaaation 

ICUT 

IPHASE 

Trajectory Phase Cut (Termination) Flag 
(INTEGER'4). 
= 0 No Cut upon completion of current step. 
# 0 Cut Phase (Terminate Phase) upon completion of 

current step. 

Trajectory Phase Identification Pointer (INTEGER*4). 

= 0 Prior to Start of the Learning Trajectory. 
t < TLlNlT 

= 1 At the Start of the Learning Trajectory. 
t = TLlNlT 

= 2 During the Learning Trajectory. 
TLlNlT < t < TLFINL 

= 3 At Termination of the Learning Trajectory. 
t = TLFINL 

= 4 Between the Learning & Controlled Trajectories. 
TLFINL < t TClNlT 

= 5 At Start of the Controlled Trajectory. 
t = TClNlT 

= 6 During the Controlled Trajectory. 
TClNlT < t TCFINL 

= 7 At Termination of the Controlled Trajectory. 
t = TCFINL 

= 8 After Termination of the Controlled Trajectory. 
t > TCFINL 

ISTEP 0 The Step Number of the Current Trajectory Integration 
Step. Note that if: (INTEGER*4). 

ISTEPO = 0 and STMODC f 2 or 3, ISTEP is reset 
to ISTEP = 1 at the start of the Controlled Trajectory. 

ISTEPO # 0 or STMODC = 2 or 3, STEP is reset to 
STEP = STEP + ISTEPO at the start of the 
Controlled Trajectory. 
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lnternallv Set Parameters Group A [Continued) 

lnternallv Set Parameters for Traiectorv Propaaation 

L 

L1 

Def au I t 
or 

Initial 
Parameter Value 

J 1 

L2 

L3 

LMAX 

LSTEP 

1 

1 

Definition 

Index which Specifies the J-th Element Position in 
the Plant Output Vectors (i.e., the P l a n t  
MeasuremenVState Vector) YA(J), YD(J,L), and 
YN(J) (INTEGER*4). 

Index which Specifies the L-th Data Set in the Data 
Sliding Window (INTEGER*4). 

1 I L I LMAX 

Index which Assigns the Analytic Modelling 
Function for a specific (L3,L2,L1) to  either the Plant 
Input Vector (i.e., the Plant Control Vector) or the 
Plant Output vector (i.e., Piani Measureriienb’Siate 
Vector). L1 is the name for the subscript L1 in the 
computer code (!F.!ESERf4). 
= 1 Specifies that the Model applies to an element of 

the Plant Input Vector (i.e., the Plant Control 
Vector). 

= 2 Specifies that the Model applies to an element of 
the Plant Output Vector (Le., Plant 
MeasurementlState Vector). 

Index which Specifies the Element Number for the 
Plant Input Vector (i.e., the Plant Control Vector) if 
L1 = 1, or the Plant Output Vector (Le., Plant 
MeasurementEtate Vector) if L1 = 2. L2 is the name 
for the subscript L 2  in the computer code 
(INTEGERf4). 

Index which Specifies the Element Number of the 
Analytic Madelling Function for a specific (L2,Ll). L3 
is the name for the subscript L3 in the computer code 
(INTEGERf4). 

The Current Number of Data Sets in the Data 
Sliding Window (i.e., the Maximum Value that the index 
L can have) (INTEGER.4). 

1 S L I LMAX I DLGTH 

Data Read Counter Number during the Current 
Trajectory (INTEGERf4). 

LSTEP = 1 + (ISTEP - l)/DFREQ 
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lnternallv Set Parameters Group A (Continued) 

Internally Se t Parameters for Traiectorv Propaaation 

LTBL 1 Index which Specifies the LTBL-th Data Set of the 
Plant Model Data Table (INTEGER*4). 

1 I LTBL I TBLMAX 

NNlD 

NNUP 

NNUPO 

T 

TABS 

Neural-Net (NN) CW(I,J,K)s U p d a t e  
Frequencynnhibit Flag (I NTEG ER*4). 
= NNLID During the Learning Trajectory. 
= NNCID During the Controlled Trajectory. 
I 0 Do w Update NN CW(I,J,K)s. 
> 0 Update NN CW(I,J,K)s every NNlD times. 

Neural-Net (NN) CW(I,J,K)s Update Frequency Flag 
(INTEGEW4). 

NNUP = JMOD(ISTEP-1, NNID) 
= 0 Update NN CW(I,J,K)s. 
# 0 Do w Update NN CW(I,J,K)s. 

Neural-Net (NN) CW(I,J,K)s Update Inhibit Flag 
(INTEGER*4). Currentlv NOT an OD tion 

= 0 Do Inhibit NN CW(I,J,K)s Update at Start of 
the Controlled Trajectory. 

= 1 Inhibit NN CW(I,J,K)s Update at Start of the 
Controlled Trajectory iff a NN CW(I,J,K)s Update 
was done at the End of the Learning Trajectory. 

Either the Current Absolute Time (TABS) or the 
Current Relative Time (TREL) as appropriately 
specified by TLTYPE or TCTYPE. If: (REAL*8). 
TLTYPE I O  during the Learning Trajectory, then: 

T = TABS. 
TLTYPE > 0 during the Learning Trajectory, then: 

T = TREL. 
TCTYPE I O  during the Controlled Trajectory, then: 

T = TABS. 
TCTYPE > 0 during the Controlled Trajectory, then: 

T = TREL. 

Current Absolute Time. Note that if: (REAL*8). 

TLTYPE 5 0 during the Learning Trajectory, then: 

TLTYPE > 0 during the Learning Trajectory, then: 
TABS is measured from TLINIT. 

TABS is measured from TINIT + TLINIT. 
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lnternallv Set Parameters Group A (Continued) 

lnternallv Set Parameters for Traiectory Prooaaation 

Default 
or 

Initial 
Parameter Value 

TABS 

- TBLMAX 

TCUT 

- TD(L) 

TREL 

1 

Definition 

(Continued) 
TCTYPE I 0 during the Controlled Trajectory, then: 

TCTYPE > 0 during the Controlled Trajectory, then: 
TABS is measured from TCINIT. 

TABS is measured from TLRNL + TCINIT. 

The Number of Data Sets (i.e.. the Maximum Value 
that the index LTBL can have) in the Plant Model 
Data Table (INTEGER.4). 

1 I LTBL I TBLMAX 

Tmjectory CL! (Termination! Time !REAL*8!. 

TLTYPE I O  during the Learning Trajectory, then: 
TCUT is the vahe af the Absolute Time (Le., the 
value of TABS) specified by TFINL. 

TCUT is the value of the Relative Time (i.e., the 
value of TREL) specified by TFINL. 

TCUT is the value of the Absolute Time (Le., the 
value of TABS) specified by TFINL. 

TCUT is the value of the Relative Time (Le., the 
value of TREL) specified by TFINL. 

TLTYPE > 0 during the Learning Trajectory, then: 

TCTYPE 5 0 during the Controlled Trajectory, then: 

TCTYPE > 0 during the Controlled Trajectory, then: 

Either the Absolute Time (TABS) or the Relative 
Time (TREL) as appropriately defined by TLTYPE or 
TCTYPE corresponding to the "Actual" (Reference) 
Plant Model defined in the L-th Data Set in the Data 
Sliding Window (REAL*8). 

Current Relative Time. Note that if: (REAL.8). 

TLTYPE 5 0 during the Learning Trajectory, then: 

TLTYPE > 0 during the Learning Trajectory, then: 

TCTYPE 5 0 during the Controlled Trajectory, then: 

TCTYPE > 0 during the Controlled Trajectory, then: 

TREL is measured from ZERO. 

TREL is measured from TUNIT. 

TREL is measured from ZERO. 

TREL is measured from TCINIT. 
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lnternallv Set Parameters Group A (Continued) 

lnternallv Set Parameters for Traiectorv Propaaation 

TSTEP 

-0 lTBL(LTBL) 

00. XTBL(I,LTBL) 

Trajectory Integration Time Step (REALf8). 
= TLSTEP During the Learning Trajectory. 
= TCSTEP During the Controlled Trajectory. 

Either the Absolute Time (TABS) or the Relative 
Time (TREL) as appropriately defined by TLTYPE or 
TCTYPE corresponding to the “Actual” (Reference) 
Plant Model defined in the LTBL-th Data Set of the 
Plant Model Data Table used when the “Actual Plant” 
is modelled using Routine TSTATE (REAL*8). 

The I-th Element of the Input Vector (i.e., the 
Control Vector) to the “Actual” (Reference) Plant 
Model which is modelled by One of: Routine 
ASTATE (i.e., Analytic Trajectory State Synthesis), or 
Routine DSTATE (i.e., Trajectory State from On-Line 
Test Data ), or Routine TSTATE (i.e., Trajectory State 
from Stored Data Tables), or Routine USTATE (Le., 
Trajectory State from a User Supplied Model) 
(R EAL*8). 

The I-th Element of the Input Vector (Le., the 
Control Vector) to the “Actual” (Reference) Plant 
Model defined in the L-th Data Set in the Data 
Sliding Window (REAL*8). 

The I-th Element of the Input Vector (i.e., the 
Control Vector) to the Neural Network Plant Model 
which corresponds to XA(I) (REAL*8). 

The I-th Element of the Input Vector (i.e., the 
Control Vector) to the “Actual” (Reference) Plant 
Model defined in the LTBL-th Data Set of the Plant 
Model Data Table used when the “Actual Plant” is 
modelled using Routine TSTATE (REAL*8). 

The J-th Element of the Output Vector (Le., the 
MeasurementlState Vector) from the “Actual” 
(Reference) Plant Model which is modelled by One 
of: Routine ASTATE (i.e., Analytic Trajectory State 
Synthesis), or Routine DSTATE (Le., Trajectory State 
from On-Line Test Data), or Routine TSTATE (i.e., 
Trajectory State from Stored Data Tables), or Routine 
USTATE (i.e., Trajectory State from a User Supplied 
Model) (REAL*8). 
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lnternallv Se t Parameters GrouD A (Continued) 

lnternallv Set Parameters for Trajectory Propaaation 

Def au It 
or 

Initial 
Parameter Value Definition - YD(J,L) 

W J )  

- YTBL(J,LTBL) 

The J-th Element of the Output Vector (Le., the 
MeasuremenUState Vector) from the “Actual” 
(Reference) Plant Model defined in the L-th Data 
Set in the Data Sliding Window (REAL.8). 

The J-th Element of the Output Vector (i.e.. the 
MeasuremenVState Vector) from the Neural 
Network Plant Model which corresponds to YA(J) 
(REAL.8). 

The J-th Element of the Output Vector (i.e., the 
MeasuremenUState Vector) from the “Actual” 
(Reference) Plant Model defined in the LTBL-th 
Data Set ot the Piant Modei Data Tabie used wnen 
the “Actual Planr is modelled using Routine TSTATE 
(REAL.8). 
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lnternallv Set Parameters Group B 

lnternallv Set Parameters for Neural Network Operation 

Def au It 
or 

Initial 
Value 

_-____I_---__. 
Parameter _- ~ 

I 1 

J 

K 

UN N (J , K) 

XNN( I ,J,K) 

Y NN( J, K) 

1 

1 

Definition 

Index which Specifies the I-th Element Position in 
the Origin Vector for the Specific Neural-Network 
Layer specified by the index “ K  (INTEGER*4). 

Index which Specifies the J-th Element Position 
in the Destination Vector for the Specific Neural- 
Network Layer specified by the index “K” 
(INTEGER*4). 

Index which Specifies the K-th Specific Layer in 
the Neural-Network (INTEGER*4). 

Input Signal to the Pass-Through Function (Node 
Filter) at the J-th Exit (Destination) Position of 
the K-th Neural-Net Layer (REAL*8). 

UNN(J,K) = CW(I, J,K) * XNN(I, J,K) 
I 

Entry Si nal to the K-th Neural-Net Layer from 

Exit (Destination) Position. (REAL*8). 
the I-th P ntry (Origin) Position directed to the J-th 

Exit Signal from the J-th Exit (Destination) 
Position of the K-th Neural-Net Layer (REAL*8). 
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lnternallv Set Parameters Group C 

Internally Set Parameters for the Opt imisation 

Default 

Initial 
Parameter Value 

or 

CMAXC(I1) 

CMAXNNC(IJK) 

CMAXNNL( I JK) 

CMINC(I I) 

CMINNNC(1JK) 

CMINNNL( IJK) 

CON(.) 

Processes 

Definition 

The Vector of 1.u.b. Values corresponding to the 
elements of the Optimisation Control Vector 
CV(4 set to the value of the appropriate element of 
AMAXC(1) for Control Optimisation during the 
Controlled Trajectory Phase. (REAL* 8). 

The Vector of 1.u.b. Values corresponding to the 
elements of the Optimisation Control Vector 
CV(0) set to the value of the appropriate element of 
AMAXNNC(1,J.K) for Neural-Net Optimisation 
during the Controlled Trajectory Phase. 
(REAL* 8). 

The Vector of 1.u.b. Values corresponding to the 
elements of the Optimisation Control Vector 
CV(0) set to the value of the appropriate element of 
AMAXNNL( I, J, K) for Neural-Net Optimisation 
during the Learning Trajectory Phase. (REAL* 8). 

The Vector of g.1.b. Values corresponding to the 
elements of the Optimisation Control Vector 
CV(.) set to the value of the appropriate element of 
AMINC(1) for Control Optimisation during the 
Controlled Trajectory Phase. (REAL* 8). 

The Vector of g.1.b. Values corresponding to the 
elements of the Optimisation Control Vector 
CV(0) set to the value of the appropriate element of 
AMINNNC(I,J,K) for Neural-Net Optimisation 
during the Controlled Trajectory Phase. 
(REAL. 8). 

The Vector of g.1.b. Values corresponding to the 
elements of the Optimisation Control Vector 
CV(*) set to the value of the appropriate element of 
AMINNNL(I,J,K) for Neural-Net Optimisation 
during the Learning Trajectory Phase. (REAL* 8). 

The ActuaWorking Constraint Function Vector 
(REAL*8). 

where denotes IlJK during Neural-Net 
Update/Optimisation and 111 during Control 
Update/Optimisation. 

The ActuaWorking Optimisation Control Vector 
(REAL*8). 

where denotes IJK during Neural-Net 
Updateloptimisation and II during Control 
UpdatdOptimisation. 
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lnternallv Set Parameters Group C (Continued) 

lnternallv Set Parameters for the Optimisation 

CVBDC 0 

CVBDNNC 0 

Processes 

Definition 

The Initial Estimate of the Optimisation Control 
Vector CV(0) (REAL* 8). 

where denotes IJK during Neural-Net 
Update/Optimisation and II during Control 
Update/Optimisation. 

The Control Variable Bounds Specification Flag 
for Control Optimisation during the Controlled 
Trajectory Phase. (INTEGER*4). 

= 0 
where denotes II, and if 

Both Lower and Upper Bounds (Le., the 
CMlNC(0) and CMAXC(*) Vectors) are 
specified for All Elements of the Optimisation 
Control Vector CV ( 0 ) .  

All Elements of the Optimisation Control 
Vector CV(0) are constrained to be 2 zero. 
All Elements of the Optimisation Control 
Vector CV(0) are constrained to be I zero. 
Both Lower and Upper Bounds (Le., the 
CMlNC (0) and C M AXC ( 0 )  Vectors) are 
specified for All Elements of the Optimisation 
Control Vector CV (0) by specifying Only the 
First Element of the C M I  N C(0) and 
CMAXC(0) Vectors (i.e., CMINC(1) and 
CMAXC(1). In this case, all other Elements 
of the CMlNC(0) and CMAXC(*) Vectors are 
internally set Equal to the values of 
CMINC(1) and CMAXC(l), respectively. 

= 1 

= 2 

= 3 

The Control Variable Bounds Specification Flag 
for Neural-Net Optimisation during the Controlled 
Trajectory Phase. (INTEGER*4). 
= 0 Both Lower and Upper Bounds (Le., the 

CMINNNC ( 0 )  and CMAXNNC(0) Vectors) 
are specified for A l l  Elements of the 
Optimisation Control Vector CV(*). 
All Elements of the Optimisation Control 
Vector CV(*) are constrained to be 1 zero. 
All Elements of the Optimisation Control 
Vector CV(*) are constrained to be I zero. 

= 1 

= 2 
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lnternallv Set Parameters GrouD C [Continued) 

lnternallv Set Parameters for the ODtimisation 
Processes 

Default 

Initial 
or 

- Parameter Value Definition 
I 

CVBDNNC 

CVBDNNL 

CVSC( I I) 

(Continued) 

= 3 Both Lower and Upper Bounds (Le., the 
CMlNNNC(0) and CMAXNNC(0) Vectors) 
are specified for A l l  Elements of the 
Optimisation Control Vector CVk) by 
specifying Only the First Element of the 
CMlNNNC(0) and CMAXNNC(0) Vectors 
(Le., CYINNNC(1) and CMAXNNC(1). In 
this case, all other Elements of the 
CMlNNNC (0) and CMAXNNC(0) Vectors are 

qua!  tz ?he vz!ues of m,,€m:!y set =-** 
ctively. 

z . 4  

CMINNNC(1) and CMAXNNC(1). respe- 

0 The Control Variable Bounds Specification Flag 
for Neural-Net Optimisation during the Learning 
Trajectory Phase. (INTEGER.4). 

= 0 Both Lower and Upper Bounds (Le., the 
CMINNNL(0) and CMAXNNL(0) Vectors) are 
specified for All Elements of the Optimisation 
Control Vector CV (0 ) .  

All Elements of the Optimisation Control 
Vector CV(0) are constrained to be 2 zero. 
All Elements of the Optimisation Control 
Vector CV(0) are constrained to be 5 zero. 
Both Lower and Upper Bounds (i.e.. the 
CMINNNL(0) and CMAXNNL(0) Vectors) are 
specified for All Elements of the Optimisation 
Control Vector CV(0) by specifying Only the 
First Element of the CMINNNL(0) and 
CMAXNNL(0) Vectors (i.e., CMINNNL(1) 
and CMAXNNL(1). In this case, all other 
Elements of the CYINNNL(0) and 
CMAXNNL(0) Vectors are internally set Equal 
to the values of CMlNNNL(1) and 
CMAXNNL(1). respectively. 

= 1 

= 2 

= 3 

The Vector of Scaling Coefficients corresponding 
to the elements of the Optimisation Control Vector 
CV(*) set to the value of the appropriate element of 
SCVC(l) for Control Optimisation during the 
Controlled Trajectory Phase. (REAL* 8). 
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lnternallv Set Parameters GrouD C (Continued) 

lnternallv Set Parameters for the Optimisation 
Processes 

CVSNNC( IJK) The Vector of Scaling Coefficients corresponding 
to the elements of the Optimisation Control Vector 
CV(*) set to the value of the appropriate element of 
SCVNNC(I,J,K) for Neural-Net Optimisation 
during the Controlled Trajectory Phase. 
(REAL* 8). 

CVSNNL( IJK) 

I 

ICVDEF 

IECDEF 

The Vector of Scaling Coefficients corresponding 
to the elements of the Optimisation Control Vector 
CV(*) set to the value of the appropriate element of 
SCVNNL( I,J,K) for Neural-Net Optimisation during 
the Learning Trajectory Phase. (REAL* 8). 

The ActuaUWorking Optimisation End Conditions 
Vector (REAL*8). 

where denotes JJJ during Neural-Net 
Update/Optimisation and J J during Control 
Update/Optimisation 

Index which Specifies the I-th Element Position in 
the Origin Vector for the Specific Neural-Network 
Layer specified by the index "K" (INTEGER*4). 

1 

The Control Vector Disposition Flag (INTEGER*4). 

= 1 Load CV(*) for Neural-Net Optimisation 
during the Learning Trajectory Phase. 

= 2 Unload CV(*) for Neural-Net Optimisation 
during the Learning Trajectory Phase. 

= 3 Load CV(*) for Neural-Net Optimisation 
during the Controlled Trajectory Phase. 

= 4 Unload CV(*) for Neural-Net Optimisation 
during the Controlled Trajectory Phase. 

= 5 Load CV(*) for Control Optimisation during 
the Controlled Trajectory Phase. 

= 6 Unload CV(*) for Control Optimisation 
during the Controlled Trajectory Phase. 

The End Condition Disposition Flag (INTEGER*4). 
= 1 Load EC(*) for Neural-Net Optimisation 

during the Learning Trajectory Phase. 
= 2 Load EC(*) for Neural-Net Optimisation 

during the Controlled Trajectory Phase. 
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lnternallv Set Parameters &our, C (Continued) 

lnternallv Set Parameters for the ODtimisation 
Process eS 

Default 
or 

Initial 
Parameter Value 

IECDEF 

II 0 

111 

IlJK 

IJK 

J 

JJ 

JJJ 

K 

L 

0 

0 

0 

1 

0 

0 

Definition 

(Continued) 

= 3 Load EC(*) for Control Optimisation during 
the Controlled Trajectory Phase. 

Subscript/lndex which defines a particular element 
of the Optimisation Control Vector CV(*) during 
Control UpdaWOptimisation (INTEGER.4). 

Subscript/lndex which defines a particular element 
of the Constraint Function Vector CON(*) during 
Control UpdatWOptimisation jiNTEGER=4 j. 

Subscriptnndex which defines a particular eiement 
Q! ?!?e Crms!eSnt Fe??ctt!nn Veetar CON!*) during 
Neural-Net Update/Optimisation (INTEGER.4). 

SubscripUndex which defines a particular element 
of the Optimisation Control Vector CV(0) during 
Neural-Net UpdatdOptimisation (INTEGER*4). 

Index which Specifies the J-th Element Position 
in the Destination Vector for the Specific Neural- 
Network Layer specified by the index K 
( I  NTEGER'4). 

Subscriptllndex which defines a particular element 
of the Optimisation End Conditions Vector 
EC(*) during Control Update/Optimisation 
(INTEGER.4). 

Subscriptnndex which defines a particular element 
of the Optimisation End Conditions Vector 
EC(*) during Neural-Net Update/Optimisation 
(INTEGER'4). 

Index which Specifies the K-th Specific Layer in 
the Neural-Network (INTEGEW4). 

Index which Specifies the L-th Data Set in the 
Data Sliding Window (INTEGER'4). 

1 I L S LYAX 
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lnternallv Set Parameters Group C (Continued) 

lnternallv Set Parameters for the Optimisation 
Processes 

LMAX 1 The Current Number of Data Sets in the Data 
Sliding Window (Le., the Maximum Value that the 
index L can have) (INTEGER*4). 

1 I L I LMAX I DLGTH 

NCONC 0 Total Number of Elements in the ActualMlorking 
Optimisation Constraint Function Vector CON( I I I )  
(i.e., the Dimension of the ActuaVWorking 
Optimisation Constraint Function Vector, NOT to be 
confused with the Dimension of the CON(II1) Array) 
for Control Update/Optimisation during the 
Controlled Trajectory Phase (INTEGER'4). 

NCONNNC 0 Total Number of Elements in the ActualMlorking 
Optimisation Constraint Function Vector CON( I IJK) 
(i-e., the Dimension of the ActuaVWorking 
Optimisation Constraint Function Vector, NOT to be 
confused with the Dimension of the CON(IIJK) 
Array) for Neural-Net UpdatdOptimisation during 
the Controlled Trajectory Phase (INTEGER*4). 

NCONNNL 0 Total Number of Elements in the ActualMlorking 
Optimisation Constraint Function Vector CON( I I JK) 
(i.e., the Dimension of the ActuaVWorking 
Optimisation Constraint Function Vector, NOT to be 
confused with the Dimension of the CON(IIJK) 
Array) for Neural-Net UpdatdOptimisation during 
the Learning Trajectory Phase (INTEGER*4). 

NlCV 

NIJKCVC 

0 Total Number of Elements in the ActualMlorking 
Optimisation Control Vector CV(II) (Le., the 
Dimension of the ActuaVWorking Optimisation Control 
Vector, NOT to be confused with the Dimension of 
the CV(II) Array) for Control UpdatdOptimisation 
during the Controlled Trajectory Phase 
(INTEGER*4). 

0 Total Number of Elements in the ActualMlorking 
Optimisation Control Vector CV(IJK) (Le., the 
Dimension of the ActuaVWorking Optimisation Control 
Vector, NOT to be confused with the Dimension of 
the CV(IJK) Array) f o r  Neura l -Net  
Update/Optimisation during the Control led 
Trajectory Phase (INTEGER*4). 
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lnternallv Set Parameters Group C (Continued) 

lnternallv Set Parameters for the Opt imisation 
Processes 

- 

Default 

Initial 
Value Definition 

or 

~ 

Parameter 

NIJKCVL 0 Total Number of Elements in the ActuaVWorking 
Optimisation Control Vector CV(IJK) (Le., the 
Dimension of the ActuaVWorking Optimisation Control 
Vector, NOT to be confused with the Dimension of 
the CV(IJK) Array) tor Neura l -Net  
U pdate/Opt i misat  i on  during the Learn  in g 
Trajectory Phase (INTEGER*4). 

NJEC 

NJJECC 

NJJECL 

0 Total Number of Elements in the ActuaWorking 
Optimisation End Conditions Vector EC(JJ) (Le.. 
the Dimension of the ActuaWVorkinc~ Optimisation End 
Conditions Vector, NOT to be confused with the 
Dimension of the EC(JJ) Array) for Control 
Update/Optimisation during the Control led 
Trajectory Phase! (INTEGERc4). 

0 Total Number of Elements in the ActuaWorking 
Optimisation End Conditions Vector EC(JJJ) 
(i.e.. the Dimension of the ActualANorking 
Optimisation End Conditions Vector, NOT to be 
confused with the Dimension of the EC(JJJ) 
Array) for Neural-Net UpdatdOptimisation during 
the Controlled Trajectory Phase (INTEGER.4). 

0 Total Number of Elements in the ActuaWorking 
Optimisation End Conditions Vector EC( JJJ) 
(i-e., the Dimension of the ActuaVWorking 
Optimisation End Conditions Vector, NOT to be 
confused with the Dimension of the EC(JJJ) 
Array) for Neural-Net UpdatdOptimisation during 
the Learning Trajectory Phase (INTEGER*4). 

PINDX O.Oo0 The Performance Index (REAL*B). 

PINDX SUMSQ 
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lnternallv Set Parameters Group C (Continued) 

lnternallv Set Parameters for the ODtimisation 
Processes 

Default 
or 

Initial 
Value Definition _.._.._____-_______ ._-_._-____-___-_~-I___..____________.-I-_-_.__..._..__..-. ~ -.._ _____ _._._- _.-. ~ 

Parameter 

SUMSQ O.OO0 Sum of the Product of the Weighting Coefficients 
with the Squares of the Elements of the 
Optimisation End Conditions Vector E C(.) 
(REAL*8). 

__.. 

For Neural-Network Optimisation during the 
Learning Trajectory, 

LMAX 

SUMSQ = WTSNNL(L) * SUMSQW(L) 
L = l  

Where 

SUMSQW(L) = LWTNNL(JJJ) * EC(JJJ) * EC(JJJ) 
JJJ 

For Neural-Network Optimisation during the 
Controlled Trajectory, 

LMAX 

SUMSQ = WTSNNC(L) * SUMSQW(L) 
L = l  

Where 

SUMSQW(L) = xWTNNC(JJJ) * EC(JJJ) * EC(JJJ) 
JJJ 

For Control Optimisation during the Controlled 
Trajectory Phase, 
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lnternallv Se t Parameters &our, C (Continued) 

lnternallv Set Parameters for the Optimisation 
Processes 

Parameter 

SUMSQW(L) 

WC(JJ) 

WN NC( J J J) 

W NNL( J J J) 

Default 

Initial 
Value Definition 

or 

- - 
O.OO0 Sum of the Product of the Weighting Coefficients 

with the Squares of the Elements  of the 
Optimisation End Conditions Vector during 
Neural-Net Optimisation EC(0) (REAL*8). 

Where 

during the Learning Trajectory, 

SUMSQW(L) = xWTNNL(JJJ) * EC(JJJ) EC(JJJ) 
&I 

during the Controlled Trajectory, 

SUMSQW(L) = x WTNNC(JJJ) * EC(JJJ) * EC(JJJ) 
JJJ 

Weighting Coefficient element in the 
WC(JJ)*EC(JJ)* term in SUMSQ and the 
Performance Index PlNDX (REAL* 8). 

Weighting Coefficient element in the 
WNNC(JJJ)*EC(JJJ)Z term in SUMSQ and the 
Performance Index PINDX (REAL* 8). 

Weighting Coefficient element in the 
WNNL(JJJ)*EC(JJJ)* term in SUYSQ and the 
Performance Index PlNDX (REAL* 8). 
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Internal 
Value 

0.000 

1.0 D-08 

1.0 D-06 

1.0 D-03 

1.0 0-02 

0.100 

0.200 

0.300 

0.500 

0.800 

1 .000 

2.000 

e 

3.000 

7r 

5.000 

27r 

8.000 

1 o.Oo0 

360A27r 

1.0 D+02 

1.0 D 4 3  

1.0 D+06 

1.0 D 4 8  

lnternallv Set Parameters Group D 

lnternallv Set Constants 

Internal 
Name 

ZERO 

TENM8 

TENMG 

TENM3 

TENM2 

PT100 

PT200 

PT300 

PT500 

PT800 

ONE 

TWO 

EBASE 

THREE 

PI 

FIVE 

TWOPI 

EIGHT 

TEN 

RTD 

TENP2 

TENP3 

TENPG 

TENP8 

.--_-.--_I-_-_ Definition 

0.000 (REAL*8). 

O.OOO,OoO,Ol (REAL*8). 

0.000,001 (REAL*8). 

0.001 (REAL*8). 

0.010 (REAL*8). 

0.100 (REAL*8). 

0.200 (REAL*8). 

0.300 (REAL*8). 

0.500 (REAL*8). 

0.800 (REAL*8). 

1.000 (REAL*8). 

2.000 (REAL*8). 

e (2.71 8281 82845904523536) (REAL*8). 

3.000 (REAL*8). 

7r (3.14159265358979323846) (REAL*8). 

5.000 (REAL*8). 

27r (6.2831 853071 7958647693) (REALf8). 

8.000 (REAL*8). 

1 O.OO0 (REAL*8). 

360/27r Degrees#?adian (REAL*8). 

100.OOO (REAL*8). 

1 0oo.OOO (R EAL*8). 

1 000,OOO.OOO (REAL*8). 

1OO,OOO,OOO.OOO (REAL*8). 
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Routine 

ASTATE 

ASTATEOI 

ASTATE02 

ASTATE03 

ASTATEM 

ASTATEOS 

AST ATE06 

ASTATE07 

Routines Group 1 
Princ ipal OPTIMNN Peculiar Routines 

Putpose of Routine 

Synthesis of the "Actual" (Reference) Plant Model by 
Combining Selected Individual Analytic Models (i.e., 
ASTATEO1 , ASTATE02, ASTATE03, , , , 0 ) .  

The Linear Function (i.e., the Ramp Fundion) Individual Analytic 
Model Element defined by: 

Y - y , ,  = A ( x - x , , )  + c 

The Setpenfine Curve Individual Analytic Model Element defined 
by: 

The Witch of Agnesi Curve Individual 
defined by: 

Analytic Model Element 

The Inverted Witch of Agnesi Curve Individual Analytic Model 
Element defined by: 

y - y o  = a - .& 

The Enveloped Sinusoid function Individual Analytic Model 
Element defined by: 

y - yo = CExp,[a(x - x, - y)]Cos[nw(x - x, - $11 

The Hyperbolic Tangent Function (Le., the Threshold 
Function) Individual Analytic Model Element defined by: 

y - 4, = CTanh[ A(x - x,))] 

The Derivative of the Threshold Function (i.e., the Pulse 
Function) Individual Analytic Model Element defined by: 

y - y , ,  = ; i ;{CTonh[A(x-x,)# d = ACSech*[A(x-x,)] 
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Routines Group 1 (Continued) 

Routine 

ASTATRAN 

CVVCTR 

DSTATE 

ECVCTR 

GRADC 

GRADW 

INlT 

INITDAT 

JCTRL 

JNNW 

Princ ipal OPTIMNN Peculiar Routines 

The Uniform Distribution Function Individual Analytic Model 
Element defined by: 

y - y,, = [A + BUran(lS€€D)] + [C + DUran(JS€ED)]f(x - xo) 

where: Uran (0) is the Uniformly Random Distribution Function 
such that 

-1.00000 5 Uran(*) 5 + 1 . ~ 0 0  

f(*) is any of the functions defined by ASTATEO1, 

/SEED and JSEED are the seeds required by the 

ASTATE02, ASTATEOS, 0 ,  0 ,  0 ,  ASTATE07. 

VAWVMS System Subroutine RAN (0). 

Defines the Control Vector for the Optimisation Processes. 

Defines the "Actual" (Reference) Plant Model from On-Line 
Test Data. 

Defines End Conditions (Conditions-of-Interest during the 
Optimisation Process) used to evaluate the Performance Index and 
Constraint Functions. 

Defines the Analytic Gradient of the Performance Index and 
the Constraint Functions with respect to the Control 8s for the 
Optimisation Processes. 

Defines the Analytic Gradient of the Error Metric and the 
Constraint Functions with respect to the Neural-Net Signal 
Coefficients WS for the Neural-Net Learning Processes. 

Reads the Input Data defined by "NAMELIST CDATA and 
then initialises the data for the case to be processed. 

FORTRAN Code (m a complete routine) which is included in 
the OPTIMNN Peculiar Routine INlT by means of an INCLUDE 
Statement to define the initially set Default Values of the 
"NAMELIST CDATA" INPUT Parameters and the Values of the 
Internally Set Constants of the OPTIMNN System. 

Defines the Performance Index and Constraint Functions for 
the Control Optimisation Processes. 

Defines the Error Metric (Performance Index) and Constraint 
Functions for the Neural-Net Learning Processes. 
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Routines Group 1 (Continued) 
Principal OPTIMNN Pecul iar Rout ines 

Routine Purpose of Routine 

OPT1 MNN Main Driver Routine: Executes the Code by first calling 
Subroutine INIT to cause the lnput Data defined by NAMELIST 
“CDATA” to be read and initialised for the case to be 
processed, and then by subsequently calling Subroutine TRAJ 
to cause execution of the options and propagation of the 
trajectories defined by the input. 

PFNCTOO The N H a s s  (i.e., the Constant Function) Node Filter Function 
defined by: 

PFNCTO1 The Dintct-Pass (Le., the Linear Function) Node Filter Function 
defined by: 

y - y o  = A(x-x,) + C 

PFNCT02 The Hyperbolic Tangent (Threshold Function) Node Filter 
Function defined by: 

P FN CT03 The First Derivative of the Hyperbolic Tangent (Pulse 
Function) Node Filter Function defined by: 

STATE Defines the lnput Vector (Le., the Control Vector) and the 
Output Vector (Le., the MeasurementlState Vector) tofirom 
the ‘‘Actual” (Reference) Plant at a specific time point by 
Selecting the “Actual” (Rehmnce) Plant Model from amongst 
Routines ASTATE, DSTATE, TSTATE, and USTATE. 

STATENN Defines the Neural-Net State using the Current NN W and 
control 8 Values. 

TSTATE Defines the “Actual” (Reference) Plant Model from Stored 
Data Tables. 

TRAJ Propagates (Integrates) the Trajectory by lncrementing 
the 7ime. 
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Routines Group 1 (Continued) 
Principal OPTIMNN Peculiar Routines 

TYPECOM FORTRAN Code (m a complete routine) which is included in 
the OPTIMNN Peculiar Routines by means of an INCLUDE 
Statement to establish and define: 1) the Principal COMMON 
Blocks; 2) the Data TYPE of the Principal Parameters, Arrays, 
and Vectors; and 3) the DIMENSION of the Principal Arrays 
and Vectors of the OPTIMNN System. 

USTATE Defines the “Actual” (Reference) Plant Model from a User 
Supplied Model. 
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Routines Group 2 
Principal IMSL MATHILIBRAR Y Routines 

used bv OPTIMNN 

Routine Purpose of Routine - 

DNCONF IMSL MATHLIBRARY Routine which solves a general non-linear 
programming problem using a successive quadratic programming 
algorithm and a finitedifference approximation gradient. See pages 
895902 in Chapter 8 of Reference D-3 

DN40NF1 M d i i  IMSL MAMIBRARY DN40NF Routine which is called 
during the computation process initiated when the IMSL 
MATWLIBRARY Routine DNCONF is called. DN40NF was 
m o d i i  to provide better mathematical conditioning for the controller 
problems considered. 

DNCONG IMSL MATHLIBRARY Routine which solves a general non-linear 
programming problem using a successive quadratic programming 
algorithm and a user-supplied (analytic) gradient routine. See 
pages 903-908 in Chapter 8 of Reference 0-3 

DNSONGl Modified lMSL MATWLiBWFiY Dfi30NG Routine which is called 
during the computation process initiated when the IMSL 
MATWLIBRARY Routine DNCONG is called. DNSONG was 
m o d i  to provide better mathematical conditioning for the controller 
problems considered. 

ERSET IMSL MATHLIBRARY Error Handling Routine which sets actions 
to be taken (changes the default actions) when errors occur during 
the execution of IMSL MATH/LIBRARY Routines. See pages 
1 130-1 134 in Chapter 8 of Reference D-3. 

IMSL MATHRIBRARY Error Handling Routine which retrieves the 
integer d e  defined when an informational error occurs during the 
execution of IMSL MATHMBRARY Routines. See pages 1130- 
11 34 in Chapter 8 of Reference 0-3. 

IERCD 
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Routines Group 3 

PrinciDal VAWMS FORTRAN Routines 
used bv OPTIMNN 

DABS Absolute Value VAXNMS FORTRAN Double Precision Intrinsic 
Function. 

Y = DABS(ARG) = Abs(ARG) = IARGl 

where: Y is REAL*8, ARG is REAL*8 

DATAN2D Arc Tangent VAXNMS FORTRAN Double Precision Intrinsic 
Function. 

Y = DATAN2D(ARGl/ARGP) + Tan-l(ARGlIARG2) 
where: Y is REAL*8, Y is inDearees, 

-180 Degrees < Y e +180 Degrees, 
ARGl is REAL*8 and ARGl = Sin(Y), 
ARG2 is REAL*8 and ARG2 = Cos(Y) 

DCOS Cosine VAWVMS FORTRAN Double Precision Intrinsic Function. 

Y = DCOS(ARG) = COS(ARG) 

where: Y is REAL*8, Y isin Radians, 
ARG isREAL*8 

DCOSD Cosine (Degrees) VAXNMS FORTRAN Double Precision 
Intrinsic Function. 

Y = DCOSD(ARG) = COS(ARG) 

where: Y is REAL*8, Y is in &&gees, 
ARG is REAL*8 

DCOSH Hyperbolic Cosine VAWVMS FORTRAN Double Precision 
Intrinsic Function. 

Y = DCOSH(ARG) = COSh(ARG) 
where: Y is REAL*& ARG is REAL*8 

DEXP Exponential VAXNMS FORTRAN Double Precision Intrinsic 
Function. 

Y = DEXP(ARG) = Exp,(ARG) 
where: Y is REAL*8, ARG is REAL*8 
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Routines Group 3 (Continued) 
PrinciDal VAWVMS FORTRAN Rout ines 

used bv OPTIMNN 

Routine Purpose of Routine 

DFLOTJ /NTEGER*Q to REAL*8 Conversion VAWVMS FORTRAN 
Double Precision Intrinsic Function. This function converts the 
INTEGER'4 argument to the floating point REALf8 equivalent 
which is returned as the function value. 

Y = DFLOTJ(IARG) = Flmt(lARG) 
where: Y is REAL*8, IARG is INTEGER*4 

DINT Truncation (REALQI to REAL*) V W M S  FORTRAN Double 
Precision Intrinsic Function This function converts the floating point 
REAL*8 argument ARG to the truncated floating point REAL*8 Y 
which is returned as the function value. Y is defined as the largest 
integral value whose magnitude does not exceed the magnitude of 
AWG and -&mse sign is !he same BP thlt nf ARG. For example, 
DINT(7.9) equals 7.000 and JIDINT(-7.9) equals -7.000. 

where: Y is REAL*8, ARG is REAL.8, 
Y = DINT(ARG) = Tiiiri(ARG) 

Tmnc(.) is the Tmncaiion Fumfh. 

DLOG NatUf8/ Logarithm VAWMS FORTRAN Double Precision 
Intrinsic Function. 

Y = DLOG(ARG) = La(ARG) = Ln(ARG) 
where: Y is REAL*8, ARG is REAL*8 

DMAXl selection of Maximum VAXNMS FORTRAN Double Precision 
Intrinsic Function. This function returns the value of the argument in 
the argument list (ARG1, ARG2, ARG3, , , , 0 )  which has the 
greatest value. There must be at least two arguments in the 
argument l i .  

Y = DMAXl(ARG1, ARG2, ARG3, 0 ,  0 ,  0 ,  0 )  

where: Y isREAL*8, 
ARG1, ARG2, ARG3, 0 ,  0 ,  0 ,  are REAL*8 

DMlNl Se/ection of Minimum VAWVMS FORTRAN Double Precision 
Intrinsic Function. This function returns the value of the argument in 
the argument list (ARG1, ARG2, ARG3, , , , 0 )  which has the 
least value. There must be at least two arguments in the argument 
list. 

Y = DMINl(ARG1, ARG2, ARG3, 0 ,  0 ,  0 ,  0 )  

where: Y is REAL*8, 
ARG1, ARG2, ARG3, 0 ,  0 ,  0 ,  are REALf8 
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Routines Group 3 (Continued) 
Principal V A W  MS FORTRAN Routines 

used bv OPTIMNN 

DMOD Remainder VAWVMS FORTRAN Intrinsic Function. This function 
returns the remainder when the first argument is divided by the 
second. 

Y = DMOD(ARGl,ARG2) 

Y = ARGl - ARG2*Trunc(ARGl/ARG2) 

Y = ARGl - ARG2*DlNT(ARGl/ARG2) 

where: Y is REAL*8, 
ARGl is REAL*8, 
ARG2 is REAL*8 

Twnc(*) is the Truncation Function. 

DSIGN Trcmsfer of Sign VAXNMS FORTRAN Double Precision Intrinsic 
Function. This function assigns the sign of the second argument 
(ARG2) to the absolute value of the first argument (ARG1). 

Y = DSIGN(ARG1 ,ARG2) = IARGlI*Sgn(ARG2) 

where: Y is REAL*8, 
ARGl is REAL*8, ARG2 is REAL*8 

DSlN Sine VAWVMS FORTRAN Double Precision Intrinsic Function. 
Y = DSINiARG) = Sin(ARG) 

where: Y is REALf8, Y isin Radim, 
ARG is REAL*8 

DSIND Sine (Degrees) VAXNMS FORTRAN Double Precision Intrinsic 
Function. 

Y = DSIND(ARG) = Sin(ARG) 
where: Y is REAL*8, Y is inPearees. 

ARG is REAL*8 

DSQRT Square Root VAWVMS FORTRAN Double Precision Intrinsic 
Function. 

Y = DSQRT(ARG) = a 
where: Y is REAL*8, 

ARG is REAL*8, ARG 2 O.OOOOO 
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Routines Group 3 [Continued) 
Principal VAWVMS FORTRAN Rout ines 

used bv OPTIMNN 

Routine Purpose of Routine 

DTAN Tangen2 VAXNMS FORTRAN Double Precision Intrinsic Function. 

Y = DTAN(ARG) = Tan(ARG) 
where: Y is REAL.8, Y is in Radians, 

ARG is REAL*8 

DTAND TengenZ (Degrees) VAXNMS FORTRAN Double Precision 
Intrinsic Function. 

Y = DTAND(ARG) = Tan(ARG) 
where: Y is REAL.8, Y isin-, 

ARG is REAL*8 

DTANH Hypefbo/ic T8ngmZ VAXNMS FORTRAN Double Precision 
intrinsic Functitxr. 

Y = DTANH(ARG) = Tanh(ARG) 
where: Y is REAL.8, ARG is REAL*8 

JlDlNT Truncation (REAL *8 to INTEGER*4 Conversion) VAWVMS 
FORTRAN Double Precision Intrinsic Function This function 
converts the floating point REAL.8 argument ARG to the truncated 
INTEGER*4 IY which is returned as the function value. IY is 
defined as the largest integer whose magnitude does not exceed 
the magnitude of ARG and whose sign is the same as that of ARG. 
For example, JIDINT(7.9) equals 7 and JIDINT(-7.9) equals -7. 

IY = JIDINT(ARG) = Trunc(ARG) 
where: IY is INTEGER.14, ARG is REAL*8, 

Trunc(*) is the Tmncation Function. 

JMAXO selection of Maximum VAWVMS FORTRAN Intrinsic Function. 
This function returns the value of the argument in the argument list 
(IARG1, IARG2, IARG3, a, 0 .  0 ,  0 )  which has the greatest value. 
There must be at least two arguments in the argument list. 

IY = JMAXO(IARG1, IARG2, IARG3, *, 0 ,  0 ,  0 )  

where: IY is INTEGER*4, 
IARG1, IARG2, IARG3, 0 .  0 ,  0 ,  are INTEGER*4 
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Routines Group 3 (Continued) 
Princioal VAWVMS FORTRAN Routines 

used bv OPTIMNN 

JMOD Rem8inder VAWVMS FORTRAN Intrinsic Function. This function 
returns the remainder when the first argument is divided by the 
second. 

IY = JMOD(IARG1 ,IARG2) 

IY = IARG1 - IARG2*Trunc(lARGl/IARG2) 

IY = lARG1 - IARG2*(IARGl/IARG2) 

where: IY is INTEGER*4, 
IARG1 is INTEGER*4, 
IARG2 is INTEGERf4 

Trunc ( 0 )  is the Truncation Function. 

RAN Uniformly Distributed Random Number Generator VAWVMS 
FORTRAN System Subroutine. RAN is a general random number 
generator of the multiplicative congruential type. RAN produces a 
Single Precision Floating Point (REAL.4) number that is uniformly 
distributed in the range between 0.00000 inclusive and 1.00000 
inclusive ( [O.OOOOO, 1.00000] ) from an input seed (ISEED). 

Y = RAN(ISEED) = Urand(lSEED) 

where: Y is REAL*4, o.Ooo00 I Y I +1.oO000 
GEED is INTEGER*4, 

U rand ( ) is the Uniformly Random Distribution function 
such that 

0.00000 I Urand(0) I +1.00000 
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$ASSIGN sys$ccMMAND: S Y s s m  
$ ASSIGN s y s $ m  FOR005 
$ ASSIGN sys$ovrwr FOR006 
$ SET TERM/WIDTH=80 
$ SET VERIFY 
s SET NOVERIFY 
$ !  
$ ! ***** OPTfM CCMMAND PROCEDURE: 0Pl'IM.CaM **e**  

$ !  
$ !  O N w A R " G T H E N G o T 0  
$ !  mERRoRlnENm 
$ !  msEvERET"coTo 
$ !  
$ START: 
$ !  
$ INpuIRE EXPRAA 'Fxpress to RUN OPTIM"? (Y/N)' 
s IF EXF'RAA - 4 s .  'N' THEN GOTO EXPROl 
s GOM EXPRO4 
$ EXPROl: 
$ INQUIRE EXPlU3B 'Express to LINK OPTIM"? (Y/N)' 
$ IF EXPRBB .4S. "N' THEN Gon> TYPE01 
$ GOTO EXPRO3 
$ !  
$ TYPEO1: 
$ INQUIRE TYF'EAA 'TYPE a File? (Y/N)' 
$ IF TYPEW .4S. 'N" GOTO EDITOl 
$ !  
$ ***** -E 2 File ***** 
$ !  
$ INQUIRE TYPEBB 'ENTER NAME of File to be TYPED." 
S CN ZRiiOfi TiB< Go?3 TYPE02 
$ TYPE 'TYPEBB' 
$ GUT0 TWEO1 
$ TYPE02: 
$ WRITE sYS$oUTHIT = = 
$ 
5 WRITE sYS$OvrFuT - 
$ GOM TYPE01 
$ !  
$ EDITOl: 
$ INQUIRE EDITAA 'EDIT a File? (Y/N)' 
$ IF EDITAA . as .  'N' THEN GOTO CMPLO1 
$ !  

EDIT a File ***** $ ! **e** 

$ !  

WRITE SYSSOUTPUT 'ERROR specifying File to be TYPED; Try  Again." 

$ INQUIRE EDITBB "ENTER NAME of File to be EDITED.' 
$ ON ERROR THEN Gore EDIT02 
$ EM' 'EDITBB' 
$ GOM F'IJRGE14 
$ EDITO2: 
$ WRITE sYS$CuTPUT 
$ 
$ WRITE sYs$ouTPuT - 
$ GOTO EDITOl 
$ !  
$ CMPLOl: 

WRITE SYS$(KpppvT "ERROR Specifying File to be EDITED; T r y  Again.' 

$ INQUIRE C M P W  "COMPILE a File? (Y/N). 
s IF (LMPLAA .as.  'No OOTO LINK01 

$ ! ***** COMPILE a File ***** 

$ INQUIRE CMPLBB 'DJTEl7 NAME of File to be COMPILED." 
$ INQUIRE CMPLCC "COMPILE a FORTRAN File? (Y/N)" 
$ IF CMPLCC .EQS. "N' THEN GO TO -LO6 
$ !  
$ ! ***** FQRTRAN Compilation ***** 
$ !  
$ INQUIRE CMPLDD 'Specify the /LIST Qualifier? (Y/N). 
s IF CMPLDD - 4 s .  'N' THDJ GOTO CMPL03 

$ !  

$ !  
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$ INQUIRE CMPLEE "Specify the /SHOW=INCLUDE Qualifier? (Y/N)" 
$ IF CMPLEE .EQS. "N" THEN GOT0 CMPL02 
$ 
$ !  FOR/LIST/SHOW=INCLUDE/CROSS-REFEE 'CMPLBB' .MR 
s FOR/LIST/SHOW=INCLUDE/CROSS-REFERENCE/NOWARNINGS 'CMPLBB' .FOR 
$ GOT0 PURGEOl 
$ CMPL02: 
$ 
$ !  FOR/LIST/CROSS-REFERENCE 'CMPLBB' .FOR 
$ FOR/LIST/CROSS-REFEE/NCWARNINGS 'CMPLBB'.MR 
$ GOT0 PURGEOl 
$ CMPL03: 
$ INQUIRE CMPLFF "Specify the /SHOW=INCLUDE Qualifier? (Y/N)" 
$ IF CMPLFF .EQS. "N" "HEN GOT0 CMPLOI 
$ 
$ !  FOR/SHOW=INCLUDE 'CMPLBB'.FOR 
$ FOR/SHOW=INCLUDE/NCWAFWINGS 'CMPLBB' .FOR 
$ GOT0 PURGE01 
$ CMF'LOI: 
$ ON ERROR THEN GOTO CMPL05 
$ !  FOR 'CMPLBB' .FOR 
5 FOR/"INGS 'CMPLBB'.FOR 
$ GOT0 PURGEOl 
$ CMPL05: 
$ WRITE SYS$OUTpuT " " 
$ WRITE SYS$OUTPUT "ERROR in FORTRAN Compilation." 
$ WRITE SYS$OUTF'UT " " 
$ GOT0 TYPEOl 
$ !  
$ ! *****  C Compilation ***** 
$ !  
$ CMPL06: 
$ INQUIRE CMPLGG "Specify the /LIST Qualifier? (Y/N)" 
$ IF CMPLGG .EQS. "N" THEN GOT0 CMPL08 
$ INQUIRE CMPLHH 'Specify the /SHOW=INCLUDE Qualifier? (Y/N)" 
$ IF CMPLHH .EQS. "N" THEN GOT0 CMPL07 
$ 
5 CC/LIST/SHOW=INCLUDE/CROSS-REFERENCE 'CMPLBB' .C 
$ GOT0 PURGEOl 
$ CMPL07: 
$ 
5 CC/LIST/CROSS-REFERENCE 'CMPLBB'.C 
$ GOT0 PURGEOl 
$ CMPL08: 
$ INQUIRE CMPLII "Specify the /SHOW=INCLUDE Qualifier? (Y/N)" 
$ IF CMPLII .EQS. "N" THEN GOT0 CMPLO9 
$ 
$ CC/SHOW=INCLUDE 'CMPLBB'.C 
$ GOT0 PURGEOl 
$ CMPL09: 
$ 
$ CC 'CMPLBB' .C 
$ CMPL10: 
$ WRITE SYS$OUTPUT " " 
$ WRITE SYS$OUTPUT "ERROR in CC Compilation." 
$ WRITE SYS$OUTPUT " " 
$ GOT0 TYPEOl 
$ !  
$ PURGEOl: 
$ INQUIRE PURGEAA "Automatic PURGE? (Y/N)' 
$ IF PURGEAA .EQS. "N" THEN GOT0 (IMPLO1 
$ !  
$ ! *****  Automatic PURGE of Previous Files ***** 
$ !  
$ IF CMPLCC .EQS. "N" THEN GO TO PURGE05 
$ INQUIRE PURGEBB "PURGE .FOR Files? (Y/N)" 
$ IF PURGEBB .EQS. 'N" THEN GOT0 PURGE02 
$ !  
$ ! * * * * *  PURGE .FOR Files ***** 

ON ERROR THEN GOT0 CMPLOS 

ON ERROR THEN GOT0 CMPL05 

ON ERROR THEN GOT0 CMPL05 

ON ERROR THEN GOT0 CMPL10 

ON ERROR THEN GOTO CMPL10 

ON ERROR THEN GOT0 CMPLlO 

ON ERROR THEN GOT0 CMPLlO 
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$ !  
$ DIR 'CMPLBB'.FOR 
$ INQUIRE IERSAA "Are There E x A n Y  Versions 1, 2, 3 ,  and 43 (Y/N)' 
$ IF VERSAA .EQS. 'N' vEX.So1 
$ DELETE '(IMPLBB'.FOR;1 
$ RENAME 'CMPLBB'.FOR;4 'CMPLBB'.FOR;l 
$ DELETE 'CMPLBB' .FOR;2 
$ DELEI'E 'CMPLBB' .FQR; 3 
$ COPY 'CMPLBB'.FOR;l 'CMPIBB'.FOR;2 
$ COPY 'CMPLBB'.FOR;l 'CMPLEB'.FOR;3 
$ GOTO PURGE02 
$ -01: 
$ WRITE sYS$ovrPvr = = 
$ WRITE SYS$OUPUT 'PURGE NOT Executed for ',CMPLBB.".FOR Files.' 
$ WRITE sYS$oVrwr " 
$ PURGE02: 
$ DIR 'CMF'LBB' .FOR 
$ INQUIRE PURGECC 'Continue? (Y/N) " 
$ IF PURGECC .EQS. 'N" THEN COT0 PURGE03 
$ GOTO PURGE04 
$ PURGE03: 
$ WRITE syssarrwr - - 
$ WRITE slS$cwrpVr "Pause 7 Seconds. - 
$ WRITE sYS$oVrwr - 
$ WAIT 00:00:07 
$ PURGEO4: 
$ IF CMF'UD .a. 'Nu THEN Go?y) PURGE11 
s Gcx! ~"F.~!X! 
$ PURGEOS: 
$ INQUIRE PUW;EDD 'PURGE .C Files? (Y/N)" 
5 IF FGXGEEij .=S. 'N' "€Et: G3T3 Fm!X!X 
$ !  

$ !  
$ DIR 'CMF'LBB' .C 
$ INQUIRE VERSBB 'Are There ExAcnY Versions 1, 2, 3 ,  and 4? (Y/N) = 
$ IF VERSBB .EQS. 'N' THEN WKl VERSO2 
$ DELETE 'CME'L,BB' .C; 1 
$ RENAME 'CMPLBB' .C;4 'CMPLBB' .C;1 
$ DELETE 'CMPLBB' .C;2 

$ COPY 'CMPLBB'.C;l 'CMPLBB'.C;2 
$ COPY 'CMPLBB'.C;l 'CMPLBB'.C;3 
$ GOTO PURGE06 
$ vERs02: 
5 WRITE suS$Ovmrr = 
$ WRITE SYS$OUTPWF "PURGE NOT Executed for ",CMPLBB,'.C Files." 
$ WRITE sys$arrwr - 
$ PURGE06: 
$ DIR '(MPLBB'.C 
$ INQUIRE PURGEEE "Continue? (Y/N) " 
$ IF FUR- .EQS. 'N' "HRi GOTO PURGE07 
$ GOTO PURGE08 
$ PURGE07: 
$ WRITE SYS$arrPuT = 
$ WRITE SYS$ouTPvT 'Pause 7 Seconds." 
$ WRITE sYS$OvTPuT " " 
$ WAIT 00:00:07 
$ IF CMPLGG .EQS. 'N' THR4 GOTO PURGE11 
$ PURGEOB: 
$ INQUIRE PURGEFF 'PURGE .LIS Files? (Y/N)" 
$ IF PURGEFF .EQS. 'N' T" GOTO PURGE09 
$ !  
$ ! ***** PURGE .LIS Files ***** 
$ !  
$ DIR ' CMPLBB ' . LIS 
$ INQUIRE VERSCC 'Are There EXACTLY Versions 1, 2, 3 ,  and 4? (Y/N)" 
$ IF VERSCC .EQS. "N' THEN GOTO VERSO3 
$ DEJXI'F, 'CMPLBB' .LIS;l 

$ ! ttttt .C Files ttttt 

$ DEL4ErE 'CMPLBB' .c; 3 
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s RENAME 'CMPLBB'.LIS;4 'CMPLBB'.LIS;l 
s DELETE 'CMF'LBB'.LIS;2 
s DELETE 'CMPLBB'.LIS;3 
s COPY 'CMPLBB'.LIS;l 'CMPLBB'.LIS;2 
s 'COPY 'CMPLBB'.LIS;l 'CMPLBB'.LIS;3 
s GOTO PURGE09 
$ VERS03: 
s WRITE SYSSOUTPUT " " 
s WRITE SYSSOUTPUT "PURGE NOT Executed for ",CMPLBB,".LIS Files." 

$ PURGE09 : 
s DIR 'CMF'LBB'.LIS 
s INQUIRE PURGEGG "Continue? (Y/N)" 
s IF PURGEGG . a s .  "N" THEN GOTO PURGElO 
s GOTO PURGE11 
S PURGElO: 
s WRITE SYSSOUTPUT " " 
s WRITE SYSSOUTPUT "Pause 7 Seconds." 
s WRITE sYS$OUTPuT " " 
s WAIT 00:00:07 
$ PURGE11 : 
s INQUIRE PURGE" "PURGE .OW Files? (Y/N)" 
s IF PURGE" .EQS. "N" THEN GOTO PURGE12 

$ ! *****  PURGE .OW Files * * * * *  

s DIR 'CMPLBB' . O W  
s INQUIRE VERSDD "Are There EXACLY Versions 1, 2 ,  3, and 4 ?  (Y/N)" 
s IF VERSDD .mS. "N" THEN GOT0 VERSO4 
s DELETE 'CMPLBB'.OW;l 
s RENAME 'CMPLBB'.OW;4 'CMPLBB'.OBJ;l 
s DELETE 'CMPLBB' .OW;2 
s DELETE 'CMPLBB' . O W ; 3  
s COPY 'CMPLBB'.OEJ;l 'CMF'LBB'.OBJ;2 
s COPY 'CMF'LBB'.OW;l 'CMPLBB'.OW;3 
s GOTO PURGE12 
$ VERS04: 
s WRITE SYS$OUTPUT " " 
s WRITE SYSSOUTPUT "PURGE NOT Executed for  ",CMPLBB,".OW Files." 
s WRITE SYSSOUTPUT " 
$ PURGE12 : 
s DIR 'CMPLBB' . O W  
s INQUIRE PURGEII "Continue? (Y/N)" 
s IF PURGEII .EQS. "N" THEN GOTO PURGE13 

$ PURGE13 : 
s WRITE SYSSOUTPUT " " 

s WRITE SYSSOUTPUT "Pause 7 Seconds." 
s WRITE SYSSOUTPUT " " 
s WAIT 00:00:07 
s GOT0 CMPLOl 
$ PURGE14 : 
s INQUIRE PURGESJ "Automatic PURGE of Compile-Only File? (Y/N)" 
s IF PURGEJJ . 4 S .  "N" THEN Cxm, PURGE15 
S !  
$ ! * * * * *  Automatic PURGE of "Compile-Only" File * * * * *  
S !  
s DIR ' EDITBB ' 
s INQUIRE VERSEE "Are There EXACTLY Versions 1, 2, 3, and 4? ( Y / N ) "  
s IF VERSEE .EQS. "N" THEN GOT0 VERSO5 
s DELETE ' EDITBB ' ; 1 
s FtENAME ' EDITBB' ; 4 'EDITBB' ; 1 
s DELETE ' EDITBB ' ; 2 
s DELETE ' EDITBB ' ; 3 
s COPY 'ED1TBB';l 'ED1TBB';Z 
s COPY 'ED1TBB';l 'EDITBB';3 
s GOTO PURGE15 
$ VERS05: 
s WRITE SYSSOUTPUT " " 

s WRITE SYSSOUTPUT " " 

S !  

S !  

s GOT0 CMPLOl 
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$ WRITE sYS$orrrWr 'PURGE NOT Executed for ',EDITBB,' Files." 

$ PURGE15: 
$ DIR ' EDITBB ' 
$ INQUIRE PVRGEKK "Continue? (Y/N). 
$ IF puRGw( .EQS. "N" THEN GOTO PURGE16 
$ m EXPRO2 
$ PURGEJ.6: 
$ WRITE sYs$ouTm " - 
$ WRITE sYSSavrpVr 'Pause 7 Seconds." 
$ WRITE syssavrpvr " " 
$ WAIT 00:00:07 
$ EXPROZ: 
$ =IRE .Ekpress to RUN OETIM"? (Y/N). 
$ IF MPRCC .EQS. 'N' GOIO TYPE01 
$ Go -04 
$ !  
$ LINK01: 
$ INQUIRE LINKAA "LINK the OFTIMNN Code? (Y/N)" 
$ IF LINKAA .EQS. "N" THEN GOTO RUNOl 
$ !  
$ ! ***** LINK the OPTIMNN Routines ***** 
$ !  
$ MpR03: 
$ INQUIRE LINKBB 'LINK with IMSL Optbnisation System? (Y/N)" 
$ IF LINKBE .EQs. 'N" THEN GoM LINK03 
$ INQUIRE LINKCC "LINK with / M A P / C R O S S - m E  Qualifiers? (Y/N)' 
.$ IF LEXCC .EQS. 'M" 'I" lsTNUO2 
$ !  
$ ! ***** LINK Code with the I!tSL Shared Library and the 
$ 1  /?rS.?lrp.~SS-?-~-~~ Q2al ifi ers 
$ !  
$ 
$ !  LINK/MAP/CROSS-REERDJCE OFTIMNN, INIT, TRAJ. - 
$ !  m. JCTRL, CWCPR. ECVCTR, STATE", PF"00.- 
$ !  PFTC"O1, PMCTOZ, PFNCT03, STATE, ASTATE, ASTATRAN,- 
$ !  ASTATEO1, ASTATEOZ, ASTATE03, ASTATE04, ASI'ATEOS, ASTATEOC, - 
$ !  ASTATE07, DSTAm, TSTATE, USTATE, IMSLIBG_SHARE/OPT 
$ !  
$ ! *****  LINK Code with the IMSL Static Library and the 
$ !  /MAP/CROSS-REmmNCE Qualifiers 
$ !  
$ 

$ WRITE sYs$mm " " 

c 

ON ERROR m GYI'O LINK05 

TRAJ, - LINK/MAP / CROSS-REFERENCE OPTIMNN, INIT, 
JNNW. JCl'RL, CVVCTR. lXVClX. STATE", PF"00.-  
PF"01, PF"02, P F " O 3 ,  STAm, ASTAm, ASTATRAN,- 
ASTATEOl , ASTATEOZ, ASTATE03, ASTATE04, ASTATE05, ASTATEOC, - 
ASTATE07, DSTATE, TSTATE, USTATE, lX4ONF1. DNSONG1,- 
IMSLIEG-STATIC/OPT. IMSLPSECT/OPT 

$ GOTO RUNOl 
$ LINKOZ: 
$ !  
5 ! ***** LINK Code with the IMSL Shared Library with NO 
$ !  /MAP/CROSS-REmmNCE Qualifiers 
$ !  
$ 
$ !  LINK 
$ !  m, JCTRL, CWcTR. MNCTR. STATE", PFNcT00.- 
$ !  PF"O1, PFNCTOZ, PF"03, STATE, ASTATE, ASTATRAN,- 
5 !  ASTATEOl, ASTATEOZ, ASTATE03, ASTATE04, ASTATE05, ASTATE06.- 
$ !  ASTATE07, DSTATE, TSTATE, USTATE, IMSLIBG--/OPT 
$ !  
$ ! *****  LINK Code with the IMSL Static Library with NO 
$ !  /W/CROSS-REFERENCE qUalif iers 
$ !  
$ LINK 

ON ERROR "HEN COT0 LINK05 
TRAJ. - OPl'IM", INIT, 

TRAJ, - OPTIMNN, INIT, 
JNNW. JCI'RL, CWCTR. M-'1IcTR. STATE". PFNCT00,- 
P m O l ,  PFNcM2, PFNcT03, STATE, ASTATE, ASTATRAN,- 
ASTATEO1, ASTATEOZ, ASTATE03, ASTATE04, ASTAm05, ASTATE06,- 
ASTATE07, DSTATE. "STATE, USTATE, DN4ONF1, cN9ONG1.- 

***** 

***** 

***** 

*****  
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IMSLI BG-STATIC / OFT, IMSLPSEcT/ OPT 
$ GOTO RUNOl 
$ LINK03: 
$ INQUIRE LINKDD "LINK with /MAP/CROSS-REFERENCE Qualifiers? (Y/N)" 
$ IF LINKDD .EQS. "N" THEN LINK04 

$ ! * ****  LINK Code with WAG and the /MAP/CROSS-REFERENCE Qualifiers ***** 

$ 

$ !  

$ !  

$ LINK/MAP/CROSS-REFERENCE OPTIMNN, INIT, TRAJ. - 
ON ERROR 'ITEN GOT0 LINK05 

JNNW, JCTRL, CWCTR, ECVCTR. STATE", PFNCT00.- 
PFNCTOl, PFNCT02, PFNCT03, STATE, ASTATE, ASTATRAN,- 
ASTATEOl, ASTATEO2, ASTATE03, ASTATEO4, ASl'ATEO5, ASTATE06,- 
ASTATE07, DSTATE, TSTATE, USTATE, DN4ONFl , DNgONG1, - 
WORK. [LEYLAND.OPTIMNN.OPTIMNN1]SRCVLIB.OLB 

$ GOTO RUNOl 
$ LINK04: 
$ !  
$ ! *****  LINK Code with WAG with NO /MAP/CROSS-REFERENCE Qualifiers ***** 
$ !  
$ 
$ LINK OPTIMNN, INIT, TRAJ. - 

ON ERROR THEN GOT0 LINK05 

JNNW, JCTRL, CWCTR, W C T R ,  STATE", PFNCTO0,- 
PFNCTO1, PFNCT02, PFNCT03, STATE, ASTATE, ASTATRAN,- 
ASTATEOl, ASTATE02, ASTATE03, ASTATE04, ASTATE05, ASTATEO6,- 
ASTATE07, DSTATE , TSTATE , USTATE , DN4ONF1, DN9ONG1, - 
WORK. [LEYLAND.OPTIMNN.OPTIMNNllSRCVLIB.OLB 

$ GOTO RUNOl 
$ LINK05: 
$ WRITE SYS$ouTPUT " " 
$ WRITE SYS$OUTPuT "ERROR in Linking. Terminate Process. " 
$ WRITE SYS$OUTPUT " " 
s GO TO TERMINATE 
$ RUNO1: 
$ INQUIRE RUNAA "RUN OPTIMNN? (Y/N)" 
$ IF RUNAA .EQS. "N" THEN GOT0 TERMINATE 
$ !  

$ !  
$ ! * * * * *  Clear INPUT (FOR007.DAT) and OUTPUT (FOR008.DAT) 
$ !  
$ !  
$ EXPR04: 
$ ON ERROR THEN GOT0 RUN02 . 
$ DELETE FOR007.*;* 
$ RUN02: 
$ 
$ DELETE FOR008.*;* 
$ RUN03: 
$ !  
$ ! * * * * *  COPY INPUT CDATA.DAT File to FOROO7.DAT * * * * *  
$ !  
$ 
$ COPY CDATA-DAT FOR007.DAT 
$ GOM RUN05 
$ RUNOI: 
s WRITE SYS$OUTPUT . 
$ WRITE SYS$OUTPUT "ERROR with the INPUT. Terminate Process." 
$ WRITE SYS$OUTPUT " " 
$ GOTO TERMINATE 
$ RUN05: 
$ INQUIRE RUNBB "Delete Previous EDATA.DAT;* OUTPUT Files? (Y/N)" 
$ IF RUNBB .EQS. "N" THEN GOTO RUN07 

$ ! t * t * *  Delete Previous EDATA.DAT;* OUTPUT Files. * * * * *  

$ ON ERROR THEN GOT0 RUN06 
$ DELETE EDATA.*;* 
$ GOTO RUN07 

$ ! * * e * *  RUN OpTI' * * * * *  

Data ***** 

ON ERROR THEN GOT0 RUN03 

ON ERROR THEN GOT0 RUN04 

$ !  

$ !  
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RUN06 : 
WRITE sYS$oVrwr  - 
WRITE SYS$OUl'F"' 'ERROR Clearing OVrwT (EDATA.DAT;*);- 

Continue Process.' 
WRITE sYS$cXrrwr ' " 

RUN07 : 
INQUIRE RUNCC 'TYPE I" Data (CDATA.DAT)? (Y/N)* 
IF RUNCC .=. 'N" THEN GOTO RUN09 
WRITE sYssavrm = 

mTE SYssavrPvr 
WRITE sYS$ovrWr 'INPUT Data File CDATA.DAT.- 

ON THEN GOTO RUN08 
! 
! ***** TYPE I" File cDATA.DAT/FoROO7.~T Before becution. ***** 
I 

TYPE FoR007.ART 
WRITE sYS$(xlTPuT 
WRITE SYSSOurPm 
WRITE sYS$OurPm 
GOM RUN09 

$ RUNOE: 
$ WRITE sYS$ovrPvr 
$ WRITE sYS$Ovmrr 

$ WRITE sYS$ouTPvT 
$ GoTOTERtmmTE 

Terminate h-ocess: 

$ RUNO9: 
s ASSIGN ED&TA.EAT 
$ WRITE sYS$OuTpvT 
$ WRITE sYS$ovrWr 
s w.1- SYsss-m-lT 

. I  

Vhd of Data File CDATA.MT: . .  
. .  
"ERROR with I" (CDATA.DAT/FoROO7.DAT).- 

. I  

sYS$wrpvr 

'START RUN.' 
. I  

. .  
$ SET TERM/hTLYl¶-I=132 
$ 
$ !  
$ ! ***** Execute O P T I M "  ***** 
$ !  
$ RUN O P T I M "  
$ !  
$ SET TERM/WIDTH=80 
$ GoTO RUN11 
$ RUN10: 
$ SET TERM/hTDlYi=80 
$ WRITE sYS$OuTpVr " = 
$ WRITE SYS$OUlTVT "INPUT (ERROR in Running OETIMNN. Continue.' 
$ WRITE s Y S $ O U "  a " 
$ RUN11: 

$ WRITE sYS$WTwr "END of RUN: 

$ DEASSIGN sYS$ovrWr 
$ 
$ DELEXX FOR007.*:* 
$ RUN12: 
$ !  
$ !  FOR008.DAT EDATA.DAT 
$ RUN13: 
$ INQUIRE RUNDD "TYPE INPVT Data (CDATA-DAT)? (Y/N)" 
$ IF RUNDD .4S. "N" THEN GOTO RUN15 
$ !  
$ ! ***** TYPE I= File CDATA.DAT ***** 
$ !  
$ WRITE SYS$oUTFwr " " 

$ WRITE sYssmpvT - - 
$ WRITE sYS$ouTF"' - " 

$ WRITE sYS$Ovmrr . 

ON ERROR THEN GOTO RUN10 

$ WRITE sYS$WTwr 

$ WRITE sYS$WTwr " 

CBJ ERROR THEN GOTO RUN12 

ON ERROR THEN GOTO RUN13 

$ WRITE sYS$OvTpvT "INPUT Data File CDATA.DAT: 

$ ON ERROR GOTO RUN14 
$ TYPE CDATA.DAT 

$ WRITE SYS$OVrpVr "End of INPUT Data File CDATA.DAT: 
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$ GOT0 RUN13 
$ R U N l 4 :  
$ WRITE SYS$OUTPUT " " 
$ WRITE SYS$OUl'PUT "ERROR with INPUT (CDATA.DAT). Continue Process." 
$ WRITE SYS$OUTPUT " " 
$ GOT0 RUN13 
$ RUN15: 
$ INQUIRE RUNEE "TYPE OUTPUT Data (EDATA-DAT)? (Y/N)" 
$ IF RUNEE .EQS. "N" THEN GOT0 TERMINATE 
$ !  
$ ! * * * * *  TYPE OUTPUT File EDATA.DAT ***** 
$ !  
$ WRITE SYS$OUTPUT " " 
$ WRITE SYS$OUTPUT "OUTPUT Data File EDATA-DAT." 
$ WRITE SYS$OUTF" " " 
$ SET TERM/WIDTH=132 
$ 
$ TYPE EDATA-DAT 
$ SET TERM/WIDTH=80 
$ WRITE SYS$OUTPUT " " 
$ WRITE SYS$oVrPUT " m d  of OUTPUT Data File EDATA.DAT." 
$ WRITE SYS$OUTPUT " " 
$ GOT0 RUN15 
$ RUN16: 
$ SET TERM/WIDTH=80 
$ WRITE SYS$OUTPUT " " 
$ WRITE SYS$OrrrPUT "ERROR with OUTPUT (EDATA.DAT). Continue Process." 
$ WRITE SYS$OUTPUT " ' 
$ GOT0 RUN15 
$ !  
$ TERMINATE: 
$ !  
$ ! *****  TERMINATE RUN. * * * * *  
$ !  
$ WRITE SYS$wTPUT " " 
$ WRITE SYS$OUTPUT "TERMINATE RUN." 
5 WRITE SYS$OUTPUT " " 
$ EXIT 

ON ERROR THEN GOT0 RUN16 
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C 
C 
C ***** m e  g[LEyLAM).O~IMNNITypEcoM.INC" File is Included here. 
C  his file contains the statements which establish and define: 
C 1) the principal CON Blocks; 2) the Data TYPE of the 
C principal Parameters, Arrays, and Vectors; and 3) the 
C DIMENSION of the Principal Arrays and Vectors of the 
C O P T m "  System. 
C 

C 
C 
C 

INCLUDE ' [LEyLANo.OPTIIY"1lYF'EC~.INc' 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 

C 
C 
C 

C 

C 

C 

C 
C 
C 
C 
C 

C 

C 

C 
C 
C 
C 
C 

C 

C 

C 
C 
C 
C 
C 

***** start TYPEcoM.INc ***** 

***** These statements establish and define: 1) the hrincipal 
CClMWN Blocks;  2 )  the Data TYPE of the Principal Parameters, 
Arrays, 
Arrays 

and Vectors; and 3) the DIMENSION of- the Principal 
and Vectors of the OPPIMNN System. 

IMPLICIT  "E 

***** Data Type for the Group 1 Parameters ***** 

INTEGER*4 NCON, m, NM3, NIDIM. NIJKDIM, 
1 NJDIM, NJKDIM, NKDIM, NLlDIM, NL21, NLZDIM, 
2 NL321, NL3DIM, NLDM, NLTBL 

*****  D i m e n s i o n s  for Arrays and Vectors ***** 

pARAMFL%R (NIDIM=16, NJDIM=16, NKDIM=I, NLlDIM=2, NL2DIM=12, 
1 >~>I)T,M;?, >?S--=lrnlr. NI.mTs-600\ 

PARAMETER ("KDIM=NJDIM*NKDIM, NIJWIM=NIDIM*NJDIM"KDIM) 

PAWLMETER ~NL21=NL2DIM*NLJDPI, NL321=NL3DIMfNL2DIM*NL1DIM) 

***** Data Type,  Dimension, and COMMON for the Group 2 Parameters ***** 

INTM;ER*4 MULT, TBLMAX 

REAL*8 coNsT1, ccpJsT2, 
1 LARGE3, LARGE4. SMALLl, 
2 TINIT .  TFINL. 
3 XTBL(NLZDIM,NLTBL), 
4 YTBL(NL2DIM.NLTBL) 

COMUON / GRP2 / CC"1. 
1 LARGE2, LARGF3, W E 4 ,  
2 TBIMAX. T D ,  T I N I T ,  
3 Y T B L  

***** Data Type.  Dimension, and C m  for the G r o u p  3 Parameters ***** 

=m*4 DLFREQ, DLLGIII, LDEJAY, " L I D ,  SIMODL, TLTYPE 

REAL*8 TLINIT ,  TLFINL, m P ,  WS"L(NLD1M) 

CaMElON / GRP3 / DLFREQ, DLIL7E-I. LDELAY, " L I D ,  SIMODL, T L I N I T ,  
1 TLFINL, TLSTEP, TLTYPE. W'lSNNL 

***** Data Type, Dimension, and COMMON for the G r o u p  4 Parameters ***** 

IWEGER'4 CDELAY, CVTID, DCF'REQ, DCLGTH, ISTEPO, NNCID, SIMODC, 
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1 "YPE, UPDATE 

m * 8  TCINIT, TCFINL, TCSTEP, WTSNNC(NLD1M) 
C 

C 

C 

COMMON / GRP4 / CDELAY, CVTID, DCFREQ, DCLGTH, ISTEPO, NNCID, 
1 ST'hlOIlC, XINIT, TCFINL, TCSTEP, TCTYPE, UPDATE, WSNNC 

***** Data Type,  Dimension, and COMMON for the Group 5 Parameters ***** 

INTEGER*4 "CT (NJDIM, NKDIM) , NI (NKDIM) , NJ (NKDIM) , NK 

RERL*8 AN(NJDIM,NKDIM), BN(NJDIM,NKDIM), CN(NJDIM,NKDIM), 
1 CW(NIDIM,NJDIM,NKDIM) , DN(NJDIM,NKDIM) , X N O  (NJDIM,NKDIM), 
2 YNO (NJDIM,NKDIM) 

C 

C 

C 

C 

C 

***** Data Type,  Dimension, and COMMON for the Group 6 Parameters * * * * *  

INTEXXI7*4 IFTl"(NL3DIM,NL2DIM,NL1DIM) , 
1 ISEEDl(NL3DIM,NL2DIM,NLlDIM), ISEED2(NL3DIM,NL2DIM,NLlDIM), 
2 ISEED3 (NL2DIM.NLlDIM) , JSEEDl(NL3DIM,NLZDIM,NLlDIM), 
2 JSEEDZ(NL3DIM,NLZDIM,NL1DIM), JSEED3(NL2DIM,NLlDIM). 
3 NL2(NLlDIM), NL3 (NLZDIM, NLlDIM) 

REALf8 
1 A 1  (NL3DIM,NL2DIM,NLlDIM), 
2 A3 (NLZDIM.NLlDIM), 
3 B (NL3DIM, NLZDIM, NL1DIM) , 
4 B2 (NL3DIM,NL2DIM,NLlDIM) , 
5 C (NL3DIM, NLZDIM, NLlDIM) , 
6 C2 (NL3DIM,NLZDIM,NLlDIM) , 
7 D(NL3DIM,NLZDIM,NLlDIM), 
8 D2 (NL3DIM. NL2DIM. NLlDIM) , 
9 NN(NL3DIM,NL2DIM,NLlDIM), 
o PERIOD(NL3DIM,NL2DIM,NL1DIM), 
1 PHI (NL3DIM,NL2DIM,NLlDIM), 

3 YO(NL3DIM,NLZDIM,NLlDIM), 
4 YR2 (NL3DIM,NLZDIM,NLlDIM), 

2 ?WoPIO, 

A(NL3DIM,NLZDIM,NLlDIM), 
A2(NL3DIM,NLZDIM,NLlDIM), 
ALPHA(NL3DIM,NL2DIM,NLlDIM). 
Bl(NL3DIM,NL2DIM,NLlDIM), 
B3 (NL2DIM,NLlDIM) , 
Cl(NL3DIM,NL2DIM,NLlDIM), 
C3(NLZDIM,NLlDIM), 
Dl(NL3DIM,NL2DIM,NLlDIM), 
D3 (NL2DIM,NLlDIM), 
OMEGA (NL3 DIM, NL2 DIM, NLIDIM) , 
PHASE(NL3DIM,NL2DIM,NLlDIM) , 
PSI (NL3DIM. NL2DIM, NLIDIM) , 
XO(NL3DIM,NL2DIM,NL1DIM), 
YR1(NL3DIM,NL2DIM,NL1DIM), 
YR3(NLZDIM,NLlDIM) 

COMMON / GW6 / A, A I ,  A2. A3, ALPHA, B. 
1 B1, B2, B3, C. c1 I c2 I c3 # D. 
2 D1, D2, D3, 
3 JSEED2, JSEED3, NL2, NL3, ", 
4 PHI, PSI, xo, YO 9 

~ m m ,  ISEEDl, ISEED2, ISEED3. JSEEDl, 
OMEGA, PERIOD, PHASE. 

YR1. yR2. YR3 

* * * * *  Data Type,  Dimension, and COMMCN for the Group 7 Parameters * * * * *  

INTEGER*4 IJKCVL(NIDIM,NJDIM,NKDIM) , JJECL(NL2DIM) , 
1 ICONNNL(NIDIM,NJDIM,NKDIM), IOPTNNL, 
2 MITNNNL, OUTNNL 

REAL*8 SCVNNL(NIDIM,NJDIM,NKDIM), WINNL(NLZDIM), 
1 AMAXNNL (NIDIM, NJDIM,NKDIM) , AMI= (NIDIM,NJDIM,NKDIM) 

COMMON/GRP7/ IJKCVL, SCVNNL, JJECL, m. AMAX"L. 
1 AMINNNL, ICONNNL, IO-, MITNNNL, OWNNL 

*****  Data Type,  Dimension, and COMMON for the Group 8 Parameters * * * * *  
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, 

C 

C 

C 
C 
C 
C 
C 

C 

C 

C 
C 
C 
C 
C 

C 

C 

C 
C 
C 
C 
C 

C 

C 
C 
C 
C 
C 

C 

C 

C 
C 
C 

*e*** m t a  Type,  Dimension, and CCt" for the Group 9 Parameters 

INTB2Eftt4 ICV(NL2DIM), JEC(NL2DIM), ICONC(NL2DIM), IOpIy3. 
1 -, (wpc 

-*8 SMAXC (NUDIM), WIC (NL2DIM), AMAXC (NL2DM 1 , 
1 AMINC (NL2DIM) , SCVC(NL2DIM) 

cxM.IoN/GRPg/  Icv. scvc. JEC, wrc. AMAXC, AMmc, 
1 ICONC, SMAXC, IOPrc. MI=. wpc 

****. Data T y p e ,  Dimension, and COMUDN for the G r o u p  B Parameters 

REAL'8 UNN(NJDIM,NKDIM) , XNN(NIDIM,NJDIM,NKDIM) , Y"(NJDIM,NKDIM) 

OXMlN / GRPB / UNN. XNN. YNN 

***** Data w. Dimension. and CCM4ON for the Group C Parameters 

I"EGER'4 "BDC,  CXBmNc, C V B m ,  ICVDEF. IECDEF. 
1 11, 111, IIJK, ISK , JJ, JJJ, 
2 "c. NCONNNC. "NNL. NIW. NIJKCVC, NIJKCVL, 
3 NJEC. NJm, NJJECL 

ttttt 

t t t t t  

t t t t t  

t t t t t  
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C 
C 

C 

***** Ehd "YPECOM.INC *****  

Appendix C: TYPECOM.INC - 4 



C 
C 
C ***** The "[LEyLAND.OPTIMNN]INITDAT.INC" File is Included here. 
C 
C set Default Values of the "NAMELIST CDATA" INPUT Parameters 
C and the Values of the Internally Set Constants of the OFTIMNN 
C System. 

This file contains the statements which &fine the initially 

L 

INCLUDE '[LEYLAND.O~lM"lINITDAT.INC' 
c 
C 
C 
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C 
C 
C 
c ***** 
C 
C c ***** 
C 
C 
C 
C 
C 
C c ***** 
C 
C 
C 
C 
C c ***** 
C 

DATA 
1 
2 
3 

1 

3 

0 

? 
A 

C 
c 
C 
c ***** 
C 

DATA 
1 
2 

1 
2 

0 

C 
C 
C c ***** 
C 

DATA 
1 
2 
3 

1 
2 
3 

0 

C 
C c ***** 
C 

DATA 
1 
2 

Start INITDAT.INC ***** 

These statements define the initially set Default Values of 
the "NAMELIST CDATA" INPVT Parameters and the Values of the 
Internally Set Constants of the O P T I M "  System. 

IYLTA Set Values for the G r o u p  1 Parameters ***** 

N a E  

IYLTA Set Values for the G r o u p  2 Parameters ***** 

CQNSpl, 
CONST5 , 
LARGE4 , -. 
0.200, 
1.500, 
1, "12, 
1.OD-12, 

CONsT3, 
LARGE2, 
sMALL2. 
TINIT, 
0.800, 
1.0506, 
1.OD-06, 
0.000, 

coNsT4. 
LARGE3, 
sMALL3. 
TFINL / 
1.200, 
1.0509, 
1.OD-09. 
0.000 / 

DATA Set Values for the G r o u p  3 Parameters ***** 

DLFREQ, DLLGRI. LDELAY, "LID, 
SRIODL , TLINIT, TLFINL, TLSTEP, 
T L W E  , WrSNNL / 

1. 10, 0, 1. 
1. 0.000, 0.000, 1.000. 
0. NLDIM' 1.00.0 1 

DATA Set Values for the G r o u p  4 Parameters ***** 

CDELAY, 
ISTEPO, 
mINL. 
WrSNNc 

0. 
1. 

0.000, 
NLDIM'l. 000 

CVTID , DCFREQ. Dc-. 
NNCID, m D c .  TCINIT, 
TCsTEP. TLTYPE , UPDATE, 

1. 1. 10. 
1. 1, 0.000, 

1.000. 0, 1. 

/ 

/ 

DATA Set Values for the G r o u p  5 Parameters ***** 

0 NJKDIM*O.500, NJKDIM*O.500, NJKDIM*1.000, NIJKDIM*1.000, 
1 NJKDIM*-l.O506, NJKDIM'O, NKDIM' 3 ,  NKDIM'l, 
2 2. NJKDIM*O.OOO, NJKDIM*O.OOO / 

C 
C 
C 
C ***** DATA Set Values for the G r o u p  6 Parameters ***** 
C 

PARAMETER (~PI0=6.28318530717958647693D+OO) 
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C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

DATA A, A1 , A2, 
1 ALPHA, B, B1, 
2 B3, C. c1 I 
3 c3, D, D1, 
4 D3, IFUNCT, ISEEDl , 
5 ISEED3, JSEEDl , JSEED2 , 
6 NL2 I NL3, ", 
7 PERIOD, PHASE, PHI, 
8 xo , YO, YR1, 
9 YR3 
0 NL321*0.500, NL321*0.000, NL321*0.000, 
1 NL321*1.000, NL321*0.500, NL321*0.000, 
2 ~~21*0.000, NL321*0.250, NL321*0.000, 
3 NL21*0.000, NL321*-1.OD+06, NL321*0.000, 
4 NL21*0.000, NL321*0, NL321'78985723, 
5 NL21'72919329, NL321'95428381, NL321*68377297, 
6 NLlDIM* 1, NL21*1, NL321*1.000, 
7 NL321*1.0D+lO, NL321*0.000, NL321'0.000, 
8 NL321*0.000, NL321*0.000, NL321*0.000, 
9 NL2lfO. 000 

*****  DATA Set Values for the Grou;, 7 Parameters 

DATA IJKCVL, SCVNNL. JJECL, 
1 AMAXNNL. AMINNNL, ICONNNL, 
2 MITNNNL , OUTNNL 
0 NIJKDIM*O, NIJKDIM*1.000, NL2DIM'O. 
1 NIJKDIM'100.0, NIJKDIM*-lOO.O, NIJKDIM'O, 
2 200, 0 

***** DATA Set Values for the Group 8 Parameters 

DATA IJKCVC, SCVNNC , JJECC , 
1 AMAXNNC I AMINNNC, ICONNNC , 
2 MITNNNC , OUT"€  
0 NIJKDIM*O, NIJKDIM*1.000, NL2DIM*O, 
1 NIJKDIM*100.0, NIJKDIM*-100.0, NIJKDIM*O. 
2 200, 0 

*****  DATA Set Values for the Group 9 Parameters 

DATA ICV, SCVC # JEC I 
1 =c I AMINC, ICONC, 
2 1 0 m  , MITNC , OUTC 
0 NL2DIM*O, NL2DIM*1.000, NL2DIM*O, 
1 NL2DIMf10.00, NL2DIM*-10.00, NL2DIM* 0, 
2 0, 200, 0 

* * * * *  DATA Set Values for the Group A Parameters 

NONE 

*****  DATA Set Values for the Group B Parameters 

NONE 

A3, 
B2, 
c2, 
D2, 
ISEED2, 
JSEED3, 
OMEGA, 
PSI, 
YR2, 

/ 
NL21*0.000, 
NL321*0.000, 
NL321*0.000, 
NL321*0.000, 

NL321'81692875, 
NL21*89672847, 
NL321*1WoPIO, 
NL321*0.000, 
NL321*0.000, 

/ 

* ****  

w"L, 
IO€TNNLl, 

NL2DIM*1.000, 
0. 

/ 

/ 

* ****  

wr"C, 
I O r n C ,  

NL2DIM*1.000, 
0. 

/ 

/ 

* ****  

WIT, 
SMAXC # 

NL2DIM*1.000, 
NL2DIM*10. 00, 

/ 

/ 

*****  

***** 
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c ***** DATA Set Values for the Group C Parameters ***** 
C 

RATA CON, CVBDC, CVBDbJNc, CVBDNNL, PINDX. SUMSQ, 
1 SUMSQW / 

0.000, 0.000, 0 "*0.000. 0, 0, 0. 
1 NLDIM"O.000 / 

C 
C 
C 
c ***** 
C 

DATA 
1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

0 

C 
C 
c 
c ***** 
C 
C 
C 

DATA Set Values for the Group D Parameters ***** 

ZERO, m 8  # 

-, PTlOO, 
PT500, PTBOO, 
-, 
PI I 
TfuPI , 
=2, m 3  # 

0.000, 1.OD-OB, 
1 - OD-02, 0.100, 
0.500 ,. 0.800. 

2.71828182845904523536, 
3.14159265358979323846, 
6.28318530717958647693, 
1. oDc02, 1.0~+03, 

End INITI1AT.INC ***** 

m 6 ,  
PT200, 
ONE, 
THREE. 
FIVE. 
EIGWT, 
TENp6, 
1.OD-06, 
0.200, 
1.000, 
3.000, 
5.000, 
8.000, 
1.0DC06, 

- 8  

FT300, 
Two, 

TEN. 
TENP8 / 
1.OB-03, 
0.300. 
2.000, 

10.000, 
1.0D+O8 / 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

WAG Name: 

computer : 

Revised : 

Purpose: 

Usage : 

Arguments: 
FCNS - 

m -  

N 
& M A X -  

X 

- 

- 

xs 
G 

DF - 

DG - 

L D E  - 

U 

XL - 

xu - 

DCL - 

LDDCL - 

CD - 

C W K -  
w -  
DEL - 

- 

- 

- 

N4CNF/DN40M7 (Single/Double precision version) 

CRAY/DouBLE 

December 2 ,  1985 

Main driver for the successive quadratic programing 
algorithm. 

CALL N4ONF 

User-supplied SuBROuTINE to evaluate the functions at 
a given point. The usage is 
CW FCNS (M, ME, N, X, ACTIVE, F, G), where 
M - Total number of constraints. (Input) 
ME - Number of equality constraints. (Input) 
N - Number of variables. (Input) 
X - The point at which the function is evaluated. 

! T r i p i t  \ 
X should not be changed by FCNS. 

active carstrair?ts. ! Iqmt ! 

(Output) 

constraints at point X. (Output) 

ACTIVE - Logical vector of length MMAX indicating the 

F 

G - Vector of length &!MAX containing the values of 

FCNS must be declared MTERNAL in the calling program. 
O r d e r  of the array DG. (Input) 
MKAX must be at least MAX(1,M). 
Number of variables. (Input) 
Order of DCL where NMAX must be at least MAX(2,N+1). 
(Input) 
Vector of length N containing the initial guesses to the 
solution on input and the solution on output. 
(Input /Output) 
Vector of length N containing the diagonal scaling 
matrix. (Input) 
Vector of length M?U containing constraint values. 
(Output) 
Vector of length N+1 containing the gradient of the 
of the objective function. (Output) 
Array of dimension MMAX by M A X  containing the gradient 
of the constraints. (Output) 
Leading dimension of DG ewctly as specified in the 
dimension statement in the calling program. (Input) 
Vector of length M"2 containing the multipliers of the 
nonlinear constraints and the bounds. 
Vector of length N containing the lower bounds for the 
variables. (Input) 
Vector of length N containing the upper bounds for the 
variables. ( Input 
Array of dimension &MAX by M A X  containing an the final 
approximation to the Hessian. (Output) 
Leading dimension of DCL ewctly as specified in the 
dimension statement in the calling program. (Input) 
Vector of length NMAX containing the diagonal elements of 
the Hessian. (Output) 
Work vector of length M used in gradient evaluation. 
Work vector of length M + 2*N. 
Work vector of length N + 1. 

- The ccmputed function value at the point X. 

(Output) 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

DLA - 
E L F  - 
BDEL - 
ETA - 
XOLD - 
DLAOLD - 
V 
W 
VMUOLD - 
DPHI - 
WEN - 
SCG - 
FBEST - 
DFBEST - 
GBEST - 
DGBEST - 
WA - 
LWA - 

- 
- 

N1 - 
M N N -  
MNN2 - 
" N -  
No1 - 

Mol - 

"C - 
N G W  - 
ITER - 
NQL - 
ILINE - 
IFLISE - 
NOW - 
IW 
LIW - 
PHI - 
DFDEL - 
DBD - 
ALPHAM - 
ALPHA0 - 
SCF - 
PRD - 
ACTIVE - 

- 

LACTIV - 

L7 

Work vector of length N. 
Work vector of length N + 1. 
Work vector of length N. 
Work vector of length N. 
Work vector of length N. 
Work vector of length N. 
Work vector of length N + 1. 
Work vector of length N + 1. 
Work vector of length M + 2*N. 
Work vector of length M + 3*N. 
Work vector of length M + 2*N. 
Work vector of length MMAX. 
Work scalar. 
Work vector of length NMAX. 
Work vector of length MMAX. 
Work array of dimension Mol by N. 
Work vector of length LWA. 
Length of lnlA where LWA = N*(2*N+13) + M + MMAX + 12. 
(Input) 
Scalar containing the value N + 1. (Input) 
Scalar containing the value M + 2". (Input) 
Scalar containing the value M + 2*N + 2. (Input) 
Scalar containing the value M + 3*N. (Input) 
Scalar containing the value 1 when LLISE is true or N 
when LLISE is false. (Irgut) 
Scalar containing the value 1 when LLISE is true or MMAX 
when LLISE is false. (Input) 
Number of function evaluations. (Output) 
Number of gradient evaluations. (Output) 
Number of iterations. (Output) 
Number of QL algorithm evaluations. 
Number of line search evaluations. (Output) 
Error parameter for line search algorithm. (Output) 
Number of optimality iterations. (Output) 
Work vector of length LIW. 
Length of IW where LIW = 12. (Input) 
Scalar variable. 
Scalar variable. 
Scalar variable. 
Scalar variable. 
Scalar variable. 
Scalar variable. 
Scalar variable. 
Logical vector of length LACTIV indicating which 
constraints are active. (Output) 
Length of ACTTIE where LACTIV must be at least 200. 
(Input) 
Logical vect:r of length 7. 

(Output) 

Remark: 
The NLFQL algorithm was designed by K. Schittkowski. 

Topic: MATH Optimization 

C 
STJBROUTINEDN~ONF (FCNS, MMAX, N, NMAX, x, XS, G, DF, LDDGi 

U, XL, X U ,  E L ,  LDDCL, CD, CWK, VMU. DEL. 
DLA, ELF, BDEL, !3l'A, XOLD, DLAOLD, V, W, 
W O L D ,  DPHI, RPEN, SCG, FBEST, DFBEST, 
GBEST, DGBEST, WA, LWA, M"2, Mol, NFUNC. 

& 
& 
& 
& 
& NGRAD, ITER, NQL, ILINE, IFLISE, NOW, IW. 
& LIW, PHI, DF'DEL. DBD, ALPHAM, ALPHAO, SCF, 
& PRD, ACTIVE, L7) 

SPECIFICATIONS FOR ARGUME"S C 
INTEGER MMAX, N, NMAX, LDDG, LDDCL, MA, MNN2, Mol, "c, 

& NGRAD, ITER, NQL, ILINE, IFLISE, NOFT, LIW, Iw(*) 

& 
DOUBLE PRECISION FBEST, PHI, DFDEL, DBD, ALPHAM, ALPHAO, SCF, 

PRD, X(N), X S ( * ) ,  G(MMAX), DF(*), EG(LDEG,*). 
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C 

C 

C 

C 
C 
C 

C 

C 

C 

h U(M"Z), XL(*), xu(*). DcL~LDDcL.*). cD(*), cwK(*). 
h ~ ( 1 ) .  DEL(*) ,  DLA(*). DcLF(*). BDEL(*). ETA(*) .  
h XOLD(*),  DLAoLD(*), v ( l ) ,  W ( 1 ) ,  vMvoLD(*), D P H I ( * ) ,  
h wm(l),  S C G ( * ) ,  DFBEST(*), GBEST(*) ,  DGBEST(MOl,*), 
h vvA(*) 

LOGICAL r n T V E ( * ) ,  L 7 ( 7 )  
ExmRNALFu.as 

I"EGER I, IFAILl, ITWLS, -IT, IOU", IPR,  I-, J, 
SPECIFICATIONS FOR I1)(3AL VARIABLES 

h LIwpL, rwAQL, ME1, MmX.2. m, MN1, m, N2, mm 
DOUBLE PRECISION m i ,  mI, DCLll .  DEUW. DLAN, EDEL, E D m I .  

€4 -0, FACT, FF, OF, OUJ, PHIOLD, RPMAX, SDCLll. mCC, 
h SQD, SRES, SUM, THETA, -AI., 'MI, UAD, UF. X W n  ZE 

SPECIFICATIceJs POR ClX4BXl /DEIlONF/ 
cxMMcxu /=OW/ F, ACC, SCBW. DBDFAC, ZEFAC, R P W ,  WENS, 

& m, ZEFACU, DELTA, BETA. AMUE. M. ME. MAXFUN, 
h MAXIT, IPRINT, MODE, IFAIL,  LLISE. LQL. LMERIT 
1- M, ME, MAXFUN, MAXIT. IPRINT, MODE, I F A I L  
DOUBLE F'RECISICN F, ACC, s<IBou. DBDFAC, ZEFAC. RPm. RPmS, 

LOGICAL LLISE,  LQL, -IT 

CCMKXU /DN1lNF/ N1, LACY, ND1, MMJ, NMNN 
INTD2ER N1, LACI', No1, MNN, "N 

INIWINSIC 

EXTERNRL ElUSR, IXXFY. DCOPY. DSCAL. DSFT. WCAL, UMACH, 

& RPm, ZEFACU, DELTA, BETA, AMUE, ALM 

SPECIFICATIONS FOR CCMtCN /LBIllNF/ 

SPECIFICATIONS FOR I " S 1 C S  

SPECIFICATIONS FOR sUBR0vTINE.S 
DABS, ISWX1, W I N 1  , DBLE. DSQRT 

€8 DCSFRG, IXF5QNF. tNS(EJG. DN6ONG. DNIONG, DNBONG 
SPECIFICATIONS FOR RINCTIGNS 

-XAL W., 1WY-U. IDMAI-, PDX; DAlOT 
JJuTEER II1AMAx.IcMAx 
DOUBLE PRECISIOPJ UW3i. DDOT, DAlOT 

ZE = 0 .0W 
ON = 1.ow 
lw  = 2.0w 
EPSO = lOO.ODo*DMACH(4) 
UF = EPSO'EPSO 
OF = ON/UF 
C A L L m C H  ( 2 ,  IOUT) 

CONSTANT DATA 

INITIAL DEFINITIONS 
M N = M + N  
M E l = M E + l  
N 2 = N + N  
IM@L = LWA - & M A X  - 40 
L W L  = LIW - 10 
ILWLS = 2*mAX + 1 
IMERIT = 0 
I F  (.NOT.IMERIT) IMERIT = 4 
L 7 ( 6 )  = .FALSE. 
L 7 ( 4 )  = .FALSE. 
L 7 ( 5 )  = .FALSE. 

IF  (MODE.EQ.2 .OR. MODE.EQ.7 .OR. MODE. EQ.3 .OR. MODE-EQ. 8 )  THEN 
SQACC = nsQRT(ACC) 

L 7 ( 6 )  = .TRUE. 
IF ( I F A I L  -4. -1) Go "Q 6 1 0  
I F  ( I F A I L  .EQ. -2)  GO "Q 6 5 0  

END I F  
ILINE = 0 
ALPHA0 = ZE 
" c = o  
N G R A D = o  
ITER = 0 
NQL = 0 
Nom = 0 
IF  (M .NE. 0) 

l w l M A x 2 = M t q 4 x + M M A x  
DO 10 J=1. ?MAX2 
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ACTIVE(J) = .TRUE. 
10 CONTINUE 

END IF 
IF (.NoT.L7(6)) THEN 

CALL ElUSR ('ON') 
CAU FCNS (M, ME, N, X, ACTIVE(MMAX+l). F. G) 
CALL ElUSR ('OFF') 
CALL DN5W (FCNS, M. ME, MMAX, N. X, XS. ACTIVE, F. G, DF, 

& DG, CWK) 
END IF 
L7(1) = .FALSE. 
L7(2) = .FALSE. 
IF (DABS(F) .GE. SCBOU) THEN 

L7(1) = .TRUE. 
IF (SCBOU .GT. ZE) SCF = l.ODO/DSQRT(DABS(F)) 
F = SCF'F 
CALL DSCAL (N, SCF, DF, 1) 

END IF 
IF (M .NE. 0)  THEN 

DO 20 J=1, M 
IF (DABS(G(J1) .GE. SCBOU) L7(2) = .TRUE. 

20 CONTINUE 
END IF 

IF (L7(2)) THEN 
C 

DO 30 J=1, M 
IF (SCBOU .GT. ZE) SCG(J) = l.ODO/DMAXl(l.ODO, 

G(J) = SCG(J)*G(J) 
CALL DSCAL (N, SCG(J), DG(J,1), LDDG) 

& DSQRT(DABS(G(J1))) 

30 CONTINUE 
END IF 

IF (IPRINT .GE. 1) THEN 
C 

IF (L7(1) .AND. .NoT.L7(2j) WRITE (IOUT,99963) 

IF (L7(1) .AND. L7(2)) WRITE (IOUT.99964) 
99963 FORMAT ( / ,  5X. 'OEJM3TIVE F"CTI0N WILL BE SCALED') 

99964 FORMAT ( / ,  5X. 'OBJECTIVE AND CONSTRAINT FUNCTIONS WILL BE ' , 
& ' SCALED ' ) 

IF (."I'.L7(1) .AND. L7(2)) WRITE (IOUT,99965) 
99965 FORMAT ( / ,  5X. 'CONmINT FUNCTIONS WILL BE SCALED') 

C 
END IF 

"C = "C + 1 
NGm = NGm + 1 
DCLF(N1) = O.ODO 
CALL DCOPY (N, DF, 1, DEL, 1) 
CALL DSCAL (N, -1.ODO. DEL, 1) 
CALL DSET (N, O.ODO, DCL(N1,1), LDDCL) 
CALL DSET (N, O.OD0, DcL(l,Nl), 1) 
DCL(N1,Nl) = ZEFAC 
IF (MODE.EQ.l .OR. MODE.EQ.6 .OR. MODE.EQ.3 .OR. MODE.EQ.8) THEN 

IF (LQL) GO TO 50 
GO TO 750 

END IF 

CALL DSET (N, 1.ODO. CD, 1) 
DO 40 I=l, N 

C 

CALL DSET (N, O.OD0, DcL(1,I). 1) 

CALL DSET (N, 1.ODO. DcL(1.1). LDDcL+l) 

CALL DSET (MNN, O.ODO, VMU, 1) 
IF (MODE.EQ.l .OR. MODE.EQ.6 .OR. MODE.EQ.3 .OR. MODE.EQ.8) 

CALL DN50NG (IMERIT+3, M, ME, N, MNN, NMNN, ACC, RPEN, F, DF, G, 

40 CONTINUE 

50 CALL DSET (MNN, RPENS, RPEN, 1) 

& CALL DCOPY (MNN, u,  1, VMU, 1) 

& DG, LDDG, VMU, U, X, XL, XU, PHI, DPHI, ACTIVE, WA, 
& 4) 

C START MAIN LOOP, PRINT INTERMEDIATE 
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- -  

C ITERATES 
60 -1"E 

L7(3) = .FALSE. 
IF (IPRINT .LT. 3) GO TO 90 
IF (L7(1)) F = F/SCF 
WRITE (IovT.99966) ITER. F, (X(I),I=l,N) 

99966 FORMAT (//5X, 'ITERATION', 13, //8X, '"CTION VALUE: F(X) = ' ,  
& D16.8, /EX, 'VARIABLE: X = ' ,  /, (9X.4D16.8)) 

70 

99967 

99968 

80 

90 

99969 

100 
C 

110 

120 

130 

IF (L7(1)) F = F*SCF 
IF (M.NE.0 .AND. (L7(1).OR.L7(2))) 

IF (L7(1)) CW DSCAL (M, 1.oM)/SCF. VMU. 1) 
IF (L7(2)) 

DO 70 J=1, M 
W ( J )  = VMU(J)*SCG(J) 
G(J) = G(J)/SCG(J) 

CCBVTINUE 
EIUD IF 

END IF 
WRITE (IOUT.99967) (VMU(J) ,J=l,M") 
FORMAT (EX, 'MULTIPLIERS: U = ' ,  /, (9X.4D16.8)) 
IF (M .NE. 0) THEN 

WRITE (IOUT.99968) (G(J) ,J=l,M) 
FORMAT (EX, '-S: GfX) = ' ,  /, (9X.4D16.8)) 
IF (L7(1) .OR. L7(2)) THEN 

IF (L7(1)) CALL C S 3 L  (M. SCF, VMU, 1) 
IF (L7(2)) THEN 

DO 80 J=l, M 
VMU(J) = VMU(J)/SCG(J) 
G(J) = GfJ)*SCG(J) 

CONTINUE 
qm TC 
Y Y  4. 

END IF 
DID IF 
ITER = ITER + 1 
IF (ITER .LT. MAXIT) GO To 100 
IFAIL = 1 
IF (IPRINT .4. 0) GO TO 350 
WRITE (IOVT, 99969) 
FO-T (EX, '*'MORE THAN M I T  ITERATIONS' ) 
GO TO 350 
CONTINUE 

CALL DCOF'Y (N, DF. 1. DCLF. 1) 
DO 110 I=l, N 

CONLINm 
DO 120 I=l, N 

coI?rINuE 
IPR = 0 
IF (IPFUNT.GT.10 .AND. IPRI".LT.1000) IPR = I F "  - 10 
IF (MODE .GE. 5) GO TO 130 
IFAILl = ITER 
IF (L7(4) .OR. L7(5)) IFAILl = 1 
Iw(11) = 0 
IF (LQL) Iw(1l) = 1 
Iw(12) = 0 
CALL DN6ONG (M, ME. MMAX. N, NMAX. M", DCL, LDWL. ELF. E. 

& LDX, G, V, W, DEL. U. IFAIL1. IF%. MAFPfAX+41). 

SEARCH DIRECI'ION 

V(1) = - X(1) 

W(1) = Xu(1) - X(I) 

& LWAQL. Iw(11), L m L )  
DEL(N1) = ZE 
NQL = NQL + 1 
L7(4) = .FALSE. 
IF (IFAIL1 -4. 0) GO TO 220 
CONTINUE 
IF (ITER .4. 1) GO TO 140 
FACT = TW*DABS(DBD*DFDEL)/(DSQRT(DBD)*(ON-DEL(Nl))) 
IF (LQL) FACT = FACT'FACP 
DCLll = cMAXl(ZEFAC,FACT) 
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DCL(N1,Nl) = EMINl(ZEFACU,DCLll) 

CALL DSET (N, O.ODO, DEL, 1) 
140 CONTINUE 

DEL(N1) = 1.ow 
C 

IF (M .NE. 0)  THEN 
CALL DCOPY (M, G, 1, DG(l,Nl), 1) 
CALL DSCAL (M, -1.ODO. M=(l.N1), 1) 
Do 150 J=1, M 

IF (.NOT.ACTIVE(J)) DG(J.N1) = O.ODO 
150 CONTINUE 

END IF 

V(N1) = O.ODO 
W(N1) = 1.ODO 
IFAILl = -ITER 
IF (.NOT.L7(4) .OR. L7(5)) IFAILl = -1 
IW(11) = 0 
IF (LQL) IW(11) = 1 
IW(12) = 1 
CALL DN60NG (M, ME, MMAX, N1, NMAX, M"2, EL, LDDCL. DCLF, E, 

C 

& mDG, G, V, W, DEL, U, IFAILl. IPR. WA((MMAx+41), 
& LWAQL, IW(11), LIWQL) 
NQL = NQL + 1 
M N 1 =  M + N1+ 1 
M N N l = M + N l + N  
L7(4) = .TRUE. 
IF (IFAIL1 .EQ. 0 )  GO TO 170 

160 IFAIL = 10 + IFAILl 
IF (IPRINT .EQ. 0) GO TO 350 
WRITE (IOUT.99970) IFAILl 

GO M 350 
99970 FORMAT (8X. '**ERROR IN QL. IFAIL(QL1 = I ,  13) 

170 CONTINUE 
CALL DCOPY (N+1, U(MNl), 1, U(MN1-1), 1) 
IF (IPRINT .LT. 3) GO M 180 
WRITE (I(xpT,99971) DEL(N1) 

& ' DELTA = ' ,  D13.4) 
99971 FORMAT (8X. 'ADDITIONAL VARIABLE TO PREVENT INCONSISTENCY: ' , 

SDCLll = DCL(N1,NlI 
IF (.NOT.LQL) SDCL11 = DSQRT(SDcL11) 
WRITE (IOUT.99972) SDCL11 

99972 FORMAT (8X. 'PENALTY PARAMETER FOR DELTA: RHO = ' ,  D13.4) 
180 CONTINUE 

DCLll = DCL(N1,Nl) 
IF (DFL(N1) .LT. DELTA) GO TO 220 
DCL(N1,Nl) = KLll*RPENO 
IF (LQL) DCL(N1,Nl) = DCL(N1,Nl)'RPENO 
IF (DCLll .LT. ZEFACU) GO TO 140 

C AUGMENTED LAGRANGIAN TYPE SEARCH 
C DIRECTION 
190 L7(5) = .TRUE. 

IF (IPRINT .LT. 3) GO TO 200 
WRITE (IOUT.99973) 

99973 FORMAT (8X. '**WARNING: A W E D  LAGRANGIAN SEARCH DIRBTI'ION') 
200 CALL DNSONG (4, M, ME, N, MNN, "N, ACC, RPEN, F, DF, G. E. 

& LDDG, VMU, U, X, XL, XU, PHI. DPHI, ACTIVE, WA. 4) 
CALL DCOPY (N. DPHI, 1. WA(41). 1) 
CALL DCOPY (N, DPHI, 1, DCLF, 1) 
IFAILl = 1 
IW(11) = 0 
IF (LQL) IW(11) = 1 
IW(12) = 0 
CALL DN60NG (0, 0, MMAX, N, NMAX, MNN2. DCL. LDXL, ELF, X. 

& LDDG, G, V, W, DEL, U, IFAILl, IPR, WA(MMAX+41), 
& LWAQL, IW(11). LIWQL) 
IF (IFAIL1 .GT. 0 )  GO TO 160 
IF (M .EQ. 0)  GO TO 230 
CALL DCOPY (N2, U, -1, U(M+1), -1) 
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C TEST FOR OFTIMALITY AND FINAL OUTPUT 
SRES = ZE 
SUM = DABS(DFDEL) 
IF (L7(1)) SUM = SUM/SCF 
NACT = 0 
IF (M .NE. 0)  THEN 

DO 310 J=1, M 
IF (ACTIVE(J) NACT = NACT + 1 
UAD = DABS(G(J)) 
IF (L7(2)) UAD = UAD/SCG(J) 
IF (J.LE.ME .OR. G(J).LT.ZE) SRES = SRES + UAD 

310 COp.SrINuE 
SUM = SUM + DAlOT(M.U,l,G,l) 
IF (IPRIW" .EQ. 3) THEN 

WRITE (IOUT,99974) SRES 
99974 FORMAT (8X. 'SUM OF CONSTRAINT VIOLATIONS: I ,  19X. 

& 'SCV = I ,  D13.4) 
WRITE (IOUT.99975) NACT 

99975 FORMAT (8X. 'NUMBER OF ACTIVE CONSTRAINTS: ' ,  19X. 
& "AC = I ,  14) 

END IF 
END IF 

DO 320 I=l, N 
C 

SUM = SUM + DABS(U(M+I)*V(I)) + DABS(U(MN+I)*W(I)) 
320 CONTINUE 

IF (IPRINT .EQ. 2) THEN 
FF = F 
IF (L7(1)) FF = F/SCF 
WRITE (IOuT,99976) ITER, FF, SRES, NACl', ILINE, ALPHAO, 

& DEL(N11, DLAN, SUM 
99976 FORMAT (lX, 13, D16.8, D10.2, 14, 13, 4D10.2) 

C 
EM) IF 

IF (IPRINT .EQ. 3) THEN 
WRITE (IOUT,99977) SUM 

& 'KTO = I ,  D13.4) 
99977 FORMAT (8X. 'KUHN-TUCKER OPTIMALITY CONDITION: ' #  9x, 

WRITE (IOUT.99978) DLAN 
99978 FORMAT (8X, 'NORM OF LAGRANGIAN GRADIENT: ' ,  9x, 

& 'Nu; = ' ,  D13.4) 

99979 

330 

340 
350 

3 60 

370 
C 

END IF 
IF (DBD .GE. W) GO TO 330 
IF (SRES .LT. SQACC) GO TO 340 
IF (DBD .GT. ZE) GO TO 390 
IF (.NOT.L7(5) 1 GO TO 190 
IFAIL = 7 
IF (IPRINT .EQ. 0 )  GO TO 350 
WRITE (IOUT,99979) 
FORMAT (8X, '**UNDERFLOW IN D(T)*B*D AND INFEASIBLE ITERATE X') 
GO M 350 
CONTINUE 
IF (SUM.GE.ACC .OR. SRES.GT.SQACC) GO TO 390 
IF (DLAN.LE.DSQRT(SQACC) .OR. DBD.LE.ACC) GO M 340 
NOFT = NOFT + 1 
IF (NOW .LT. 3) GO TO 390 
IFAIL = 0 
CONTINUE 
IF (L7(1)) F = F/SCF 
IF (M.EQ.0 .OR. (.NOI'.L7(1).AND..N(YT.L7(2))) GO TO 370 - 
IF (L7(1)) CALL DSCAL (N, 
IF (L7(2)) THEN 

Do 360 J=1, M 
U(J) = U(J)*SCG(J) 
G(J) = G(J)/SCG(J) 

COrnINuE 
END IF 
CONTINUE 

l.ODO/SCF, U, 1) 
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99980 

99981 

99982 

99983 

99984 
380 

99985 

99986 

99987 

99988 

99989 

99990 

390 
C 

IF (IPRINT .4. 0) GO To 9000 
WRITE (IovT.99980) 
FORMAT ( / / ,  5X. ' *  FINAL CONVERGENCE ANALYSIS', / )  
WRITE (IovT.99981) F 
FORMAT (EX, 'OBJECIIVE FU"1ON VALUE: F(X) = I ,  D16.8) 
WRITE (IOUT.99982) (X(1) ,I=l,N) 
FORMAT (EX, 'APPROXIMATION OF SOLUTION: X = '  , /, (9X. 4D16.8) ) 
WRITE (IOUT.99983) (U(J) ,J=l,MNN) 
FORMAT (EX, 'APPROXIMATION OF MULTIPLIERS: U = I ,  /, (9X,4D16.8)) 
IF (M .EQ. 0) GO To 380 
WRITE (IOUT.99984) (G(J),J=l,M) 
FORMAT (EX, 'c(xIJspRAINTVAL,UES: G(X) = I ,  /, (9X,4D16.8)) 
WRITE (IoVr, 99985) (V(I), I=l,N) 
FORMAT (EX, 'DISLIANCE FRaM LOWER BOUND: XL-X = ' ,  1 ,  (9X,4D16.8)) 
WRITE (IovT.99986) (W(1) ,I=l,N) 
FORMAT (EX, 'DISTANCE FRaM UPPER BOUND: XU-X = ' ,  /, (9X.4D16.8)) 
IF (.Nar.LLISE) WRITE (IOVT.99987) ITER 
FORMAT (EX, "UMBER OF ITERATIONS: ITER = ' ,  14) 
WRITE (IovT,99988) "c 
FORMAT (EX, 'NUMBER OF FUNC-CWS: "c =',  14) 
WRITE (IovT.99989) NGRAD 
FORMAT (EX, "UMBER OF GRAD-CALLS: NGRAD = ' ,  14) 
WRITE (IOVT.99990) NQL 
FORMAT (EX, 'NUMBER OF QL-CALLS: NQL = ' ,  14, / / / )  
GO TO 9000 
C r n I N U E  

IF (L7(5)) GO TO 400 
WA(1) = DBD 
WA(2) = DEL(N1) 
h t 3 t  = Rl?Em 
WA(4) = DBLE(1TER) 
CALL DNSONG (IMERIT+2, M. ME, N. MNN. IW", ACC. WEN. F. DF. G. 

coRRE(3T PmALTY PAFaMEmR 

.-. ,-., 

& DG, LDX. VMU, U. X. X L ,  XU. PHI. DPHI. ACTIVE. 
& 4 )  
GO To 430 

Do 410 I=l, N 
400 SUM = ZE 

410 SUM = SUM + DPHI(I)*DEL(I) + DABS(U(M+I)'V(I)) + 
& DABs(u(MN+I)*w(I) 
IF (SUM .GT. DsQRT(sQACC)) GO TO 430 
Do 420 J=1, MNN 

CALL DN~ONG (IMERIT+4, M, ME, N, MNN, IW". ACC. MEN. F. DF. G. 
& DG, LDDG, VMU, u, x, XL, XU. PHI. DPHI. ACTIVE. WL 
& 4) 

420 RPEN(J) = CMINl(ZEFACU,RPEN(J)*RPENO) 

430 IF (IPRINT .LT. 3) GO To 440 
WRITE (IOUT,99991) DBD 

99991 FORMAT (EX, 'PRODUCT OF SEARCH DIRM3TION WITH BFGS-MATRIX: I ,  

& ' DBD = ' ,  D13.4) 
WRITE (IovT,99992) (RPEN(J) ,J=l,MNN) 

99992 FORMAT (8X, 'PENAL,TY P m :  R = I ,  /, (9X.4D16.8)) 

C EVALUATION OF MERIT FUNCTION 
C 

440 CCNTI"E 

450 CALL DNSW (IMERIT+3, M, ME, N, MNN, "N, ACC. WEN. F. DF. G. 
& DG, LDDG, VMU, u, x, XL, XU. PHI. DPHI, ACTIVE. WA. 
& 4) 
IF (.NDT.L~(~)) CW ENSONG (IMERIT+4, M, ME, N. MNN, m. ACC, 

& WEN. F, DF, G, DG, LDDG, VMU, U, X. XL, X U ,  PHI, DPHI, 
& ACTIVE, WA, 4) 
PRD = DDOT(N.DPHI.1.DEL.1) 
Do 460 J=1, MNN 

PHIOLD = PHI 
IF (PRD .LT. ZE) GO M 480 
CALL DSCAL (MNN, RPENO. Wm. 1) 
1- = IIMAx(MNN.RPEN.1) 
RpMAx = DMAX1(RPEN(IRPMAx).O.OW) 

460 PRD = PRD + DPHI(J+N)'(U(J)-VMU(J)) 
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IF (RPMAX .LT. RPENU) GO TO 450 
IF (L7(5)) GO TO 470 
IF (.NoT.L7(4) .OR. DBD.LT.ACC) GO TO 190 
DCLll = DCL(N1,Nl) 
IF (DCL11 .GE. ZEFACU) GO TO 190 
DCLll = DCLll*RPENO 
IF (LQL) DCLll = DCLll*WENO 
DCL(N1,Nl) = DCLll 
GO TO 140 

IFAIL = 2 
IF (IPRINT .EQ. 0) GO TO 350 
WRITE (IovT.99993) PRD 

470 CONTINUE 

99993 FORMAT (EX, '**SEARCH DIRECTION NUF PROFITABLE: DPHI*P = I ,  

& D13.4) 
GO TO 350 

IF (IPRINT .LT. 3) GO TO 490 
WRITE (IOUT.99994) PRD 

480 CONTINUE 

99994 FORMAT (EX, 'PRODUCT LAGRANGIAN GRADE" WITH ' ,  'SEARCH ' ,  
& 'DIRECTION: DLP = I ,  D13.4) 

490 CONTINUE 
C LINE SEARCH 

WA(6) = XNM 
WA(7) = DELNM 
L7(7) = .FALSE. 
IFLISE = 0 

IF (IPRINT .GE. 1000) IPR = IPRINT - 1000 
CALL DNBONG (ALPHAO, ALPHAM, PHI, PRD, AMUE, BETA, ILINE, 

500 IPR = 0 

& MAXFUN, IFLISE, IPR, WA(6). 35, IW, 10. 
& ACTIVE(ILWLS), 5) 
IF (IFLISE .GT. -2) GO TO 520 
L7(7) = .TRUE. 
FBEST = F 
CALL DCOPY (M, G, 1, GBEST, 1) 
IF (LLISE) GO TO 500 
CALL DCOPY (N, DF, 1, DFBEST, 1) 
DO 510 I=l, N 

CALL DCOPY (M, X(l,I), 1, DGBEST(1.1). 1) 
510 CONTINUE 

520 CONTINUE 

530 X(1) = XOLD(1) + ALPHAO*DEL(I) 

540 VMU(J) = VMUOLD(J) + ALPHAO*(U(J)-VMUOLD(J)) 

GO TO 500 

DO 530 I=l, N 

Do 540 J=1, MNN 

IF (IFLISE .EQ. 0 )  GO TO 570 
IF (IFLISE .EQ. 1) GO TO 560 
IF (IFLISE .GT. 1) GO TO 550 
GO TO 600 

IF (IPRINT .EQ. 0 )  GO TO 350 
WRITE (IOUT.99995) IFLISE 

GO TO 350 
560 IFAIL = 4 

IF (IPRINT .EQ. 0 )  GO TO 350 
WRITE (IOUT, 99996) 

GO TO 350 

IF (IPRINT .LT. 3) GO TO 580 
IF (ILINE .EQ. 1) WRITE (IOUT,99997) 

IF (ILINE .GT. 1) WRITE (IOUT,99998) ILINE, ALPHAO 

550 IFAIL = 1000 + IFLISE 

99995 FORMAT (8X. '**ERROR IN LINE SEARCH. IFLISE = ' ,  14) 

99996 FORMAT (8X. '**MORE THAN MAXFUN FUNC-CALLS IN LINE SEARCH') 

570 L7(3) = .TRUE. 

99997 FORMAT (8X. 'LINE SEARCH SUCCESSFUL, AFTER ONE STEP: ALPHA = 1.') 

99998 FORMAT (EX, 'LINE SEARCH SUCCESSFUL AFTER', 13, ' STEPS: ' , 
E4 ' ALPHA = I ,  D13.4) 

580 CONTINUE 
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IF (.NOT.L7(7) .AND. LLISE) Go M 630 
IF (.NoT.L7(7) .AND. .W.LLISE) GO To 250 
F = FBEST 
CALL DCOPY (M. GBEST. 1. G, 1) 
IF (LLISE) GO To 630 
CALL DCOPY (N. DFBFS". 1. DF, 1) 
DO 590 I=l, N 

CALL Dcopy (M. DGBESl"(1.I). 1. m(1,1), 1) 
590 m I N u E  

CALL ~ ~ O N G  (IMERIT+l. M, ME, N, MNN. IUMNN. ACC. WEN, F. DF. G. 
& E, LDDG, W, U, X, XL, XU, PHI, DPHI, ACTIVE. m. 
& 4)  
GO M 250 

600 CONTINUE 
C N m  FUNCPION AND GRADIENT VALUES 

IF (L7(6)) THEN 
XFAIL = -1 
Go To 9000 

EM) IF 
CALL ElUSR ('a') 
CALL FCNS (M, ME, N, X. ACTIVE(MMAX+l), F. G) 
CALL ElUSR ('OFF') 

IF (L7(1)) F = F*SCF 

IF (M.NE.0 .AND. L7(2)) 

610 CONTINUE 

C 

DO 620 J=1, M 
G(J) = SCG(J)*G(J) 

620 CCXWINUE 
EM) IF 
W I  = h i j  + 1 
CALL DN5oNG (IMERIT+3. M. ME. N. M". 
u. I??, T a x ,  VMJ. u, x, XL, 
& 4) 
IF (LLISE .AND. .NCYl'.L7(3)) Go TO 500 

CALL m5oNG (INERIT+l. M, ME. N. M", 
& M;, LDM;, VMU. u. x, XL, 
& 4 )  

630 CONTINUE 

IF (L7(1)) F = F/SCF 
IF (M.NE.0 .AM). L7(2) )  T" 

DO 640 J=l, M 
G(J) = G(J)/SCG(J) 

640 CONTINUE 
EM) IF 

IF (L7(6) THEN 
IFAIL = -2 
Go To 9000 

C 

EM) IF 

cwm5oNF (FCNS, 
C 

& CWK) 
650 

C 

660 

C 

"N, ACC, WEN. F. Df. G. 
XU, PHI, DPHI. ACTIVE. m. 

CONTINUE 
N C ; R A D = N G R A D + l  
IF (L7(1)) THEN 

F = F'SCF 
CALL DSCAL (N, SCF, DF, 1) 

END IF 
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& M;, LDE, VMU, U, X. XL, XU, PHI, DPHI, ACTIVE, WA, 
& 4 )  
PRD = DDOT(N,DPHI,l,DEL,I) 
DO 670 J=1, MNN 

GO TO 500 
670 PRD = PRD + DPHI(N+J)*(U(J)-VMUOLD(J)) 

C UPDATE HESSIAN OF LAGRANGIAN 
680 DBD = DBD*ALPHAO*ALPHAO 

CALL DSCAL (N, ALPHAO, BDEL, 1) 
DO 690 I=l, N 

ETA(1) = DLA(1) - DLAOLD(1) 

EDEL = ALPHAO*D~(N,DEL,1,ETA,1) 
DBDl = DBDFAC*DBD 
IF (EDEL .GE. DBDl) GO TO 720 
THETA = (DBD-DBDl)/(DBD-EDEL) 
THETA1 = ON - THETA 

690 CONTINUE 

DO 700 I=l, N 
700 ETA(1) = THETA'ETA(1) + THETAl'BDEL(1) 
710 EDEL = DBDl 
720 CONTINUE 

DBDI = DSQRT(ON/DBD) 
EDELI = DSQRT(ON/EDEL) 

CALL DSCAL (N, DBDI, BDEL, 1) 
CALL DSCAL (N, EDELI, ETA, 1) 
IF (LQL) THEN 

C UPDATE FACTORIZATION 

DO 740 I=l, N 
DO 730 J=1, I 

DCL(J,I) = DCL(J,I) + ETA(I)*ETA(J) - BDEL(I)*BDEL(J) 
730 CONTINUE 
740 CONTINUE 

CALL DCSFRG (N, DCL, LDDCL) 
GO TO 60 

END IF 
CALL CPSIONG (N, DCL, LDDCL, CD, ETA, BDEL) 

C CORRECT DATA FOR QL-SOLUTION 
750 DO 770 I=l, N 

SQD = DSQRT(CD(1)) 
IF (SQD .GT. UF) GO TO 760 
IFAIL = 3 
IF (IPRINT .EQ. 0) GO TO 350 
WRITE (IWT,99999) 

GO M 350 
99999 FORMAT (EX, '**UNDERFLOW. IN BFGS-UPDATE') 

760 CONTINUE 
IF (I .LT. N) CALL DVCAL (N-I, SQD, DCL(I+l.I), 1, DCL(I,I+1) 

DCL(I.1) = SQD 
& , LDDCL) 

770 CONTINUE 
IF (ITER .EQ. 0 )  GO TO 50 

GO TO 60 

END 

PERFOW NEXT ITERATION C 

9000 RETURN 

Appendix C: DN40NF1 .FOR - 12 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

KJAG Name: 

Computer: 

Revised: 

Purpose : 

Usage : 

Arguments: 

N9oNG/mS (Single/Double precision version) 

september 24, 1987 

ccmpute minimum of the unconstrained problem. 

U&L N9eK; (N, M. W ,  MIAX, MN, LQL. A, 
GRAD, G. XL, XU. X, NMX. IAm, INFO. DIAG. 
w. rw) 

Number of variables. (Input) 
Number of constraints. (Input) 
Number of equality constraints. (Input) 
Leading dimension of A. (Input) 
WAX must be at least MAX(1.M). 
Scalar variable suxh that l@l= M + N. 
Scalar variable SLU& that M" = M + 2". 
Leading dimension of G. (Input) 
WAX must be at least MAX(2,N). 
Logical scalar determining the initial decomposition. 
(Input) 
If LQL is true, the initial Cholesky-factorization of G 
is performed. If 4 L  is false. the upper triangle of G 
contains the Cholesky-factor of a suitable decomposition. 
Array of dimension MM?iX by WAX containing the constraint 
nomls  in the columns. (Output) 
Leading dimension of A exactly as specified in the 
dimension statement of the calling program. 
Vector of length @MAX containing the right-hand-sides of 
the constraints. (Input) 
Vector of length N containing the objective function 
gradient. (Input) 
Array of dimension NM?U by N containing symnetric 
objective function matrix. (Input) 
Vector of length N containing the lower bounds for the 
variables. (Input) 
Vector of length N containing the upper bounds for the 
variables. (Input 
Vector of length N containing the current point being 
evaluated. ( Input ) 
Number of active constraints. (Output) 
Vector of length NPi?l' indicating the final active 
constraints. (Output) 
Scalar containing exiting information. (Output) 
Scalar containing multiple of the unit matrix that was 
added to G to achieve positive definiteness. (Output) 
Work vector of length W. 
Length of W where Lw = ~ * ( Z * ' N M A x + l O )  + M. 
(Input ) 

WATH Cptimization 

(Input) 
(Input) 

(Input) 
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C 
C 
C 

C 

& IRE, IS, ITERC, ITREF, IU, IW, IWA, IWD, IWR, IWS, 
& w, IwWN, IWX, IWY, IWZ, IX, IY, 12, IZA, J, JFINC, 
& JFLAG, JL, K, K1, KDROP, KFINC, KFLAG, KK, KNEXT, 
€8 LFLAG, MFLAG, NFLAG. I'M, Nu 

& PARING, PARNEW, RATIO, RES, SMAU, STEP, SUM, SUMA, 

& XMAG, XMAGR 

DOUBLE PRECISION BIG, CVMAX. DIAGR. FDIFF, FDIFFA. a. GB. 
& SUMC, SUMX, SUMY, TEMP, TEMPA. VFACT, VsMALL, 

LOGICAL LOWER 

INPRINSIC DABS,DMAXl,DMINl.MAXO,MINO.DSQRT 
SPECIFICATIONS FOR INTRINSICS 

SPECIFICATIONS FOR SUBROUTINES 

SPECIFICATIONS FOR FUNCTIONS 
EXTERNAL DCOPY, DSET 

EXTERNAL DMAcH, DMYT, DSUM, DAloT 
DOUBLE PRECISION DM?icH, DMYT, DSUM, DAlUI' 

INITIAL ADDRESSES 

* * * * *  Start Debug 1 ***** 

IBUG = 0 

VSMALL = DMAcH(4) 
SMALL = mIAcH(1) 
BIG = DMACH(2) 
IF ( W L * B I G  .LT. 1.ODO) SMALL = l.OW/BIG 

C 

C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

Iwz = NMAX 
IWR = Iwz + NMAx*NMAx 
Iww = IWR + (NMAx*~NMAX+3))/2 
IWD = Iww + NMAX 
IWX = IWD + NMAx 
IwA=Iwx+NMAX 

VFACT = 1.ODO 
SET SOME CONSTANTS. 

SET SOME PARAMETERS. NUMBER LESS 
THAN VSMALL ARE ASSUMED TO BE 
"KLIGIBLE. THE MULTIPLE OF I THAT 
IS ADDED TO G IS AT MOST DIAGR 
TIMES THE LEAST MULTIPLE OF I THAT 
GIVES POSITIVE DEFINITENESS. X IS 

REDUCED BY THE FACTOR XMAGR. A 
CHECK IS MADE FOR AN INCREASE IN F 
EVERY IFINC ITERATIONS, AFTER 
KFINC ITERATIONS ARE COMPLETED. 

RE-INITIALISED IF ITS MAGNITUDE IS 

DIAGR = 2.ODO 
XMAGR = 1.OD-2 
IFINC = 3 
KFINC = MAXO(10,N) 

C FIND THE RECIPROCALS OF THE LENGTHS 
C OF THE CONSTRAINT NORMALS. RETURN 
C IF A CONSTRAINT IS INFEASIBLE DUE 
C TO A O.OEO NORMAL. 

NACT = 0 
DO 30 K=l, M 

SUM = DMYT(N.A(K.1) ,LDA,A(K,l) ,LDA) 
IF (SUM .GT. 0.OW) GO TO 10 
IF (B(K) .EQ. O.ODO) GO M 20 
INFO = -K 
IF (K .LE. MEQ) GO TO 1020 
IF (B(K)) 20,20,1020 

10 SUM = l.ODO/DSQRT(SUM) 
20 IA = IWA + K 

30 COrnINUE 
W(IA) = SUM 

CALL DSET (N, l.ODO, W(IWA+M+l), 1) 
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C 
C 

C 
C 
C 
C 
C 

C 
C 
C 
C 
C 

C 
C 
C 
C 

C 
C 
C 
C 
C 

C 
C 
C 

IF NECESSARY INCREASE THE DIAGONAL 
ELEMENTS OF G. 

IF (.NoT.LQL) TO 150 
DIAG = 0.OW 
DO 50 I=1, N 

I D = I W D + I  
W(ID) = G(I.1) 
DIAG = IXWU(DIAG.VSMALL-W(ID)) 

ttttt Start 2 ttttt 

IF (I .M. N) Go To 50 

IF (I .EQ. N .AND. N .NE. 1) GO To 50 
IF (N .NE. 1) I1 = I + 1 
IF (N .EQ. 1) I1 = 1 

I I = I + l  

ttttt EM Debug 2 ttttt 

DO 40 J=II, N 
GA = -DMINl(W(ID),G(J,J)) 
GB = DABS(W(ID)-G(J,J)) + DARS(G(1.J)) 
IF (GE3 .GT. 5Mw) GA = GA + G(I,J)*G(I,J)/GB 

40 DIAG = DMAXl(DIAG,GA) 
50 mINuE 

IF (DIAG .Gp. 0.0DO) GO M 80 
60 DIAG = DIAQI'DIAG 

DO 70 I=l, N 
ID = ~ w Z  + i 
G(I,I) = DIAG + W(ID) 

70 CfXWINUE 
FORM THE CHOLESKY FAcrORISATION OF 
G. THE TRANSPOSE OF THE FAcroR 
WILL BE PLACED IN THE R-PARTITION 
OF W. 

80 IR = IhR 
DO 110 J=1, N 

IRA = IWR 
IRB = IR + 1 
DO 100 I=1, J 

TEMP = G(I,J) 

ttttt start m g  3 ttttt 

IF (I .NE. 1) THDl 

IF (I .NE. 1 .OR. N .EQ. 1) THEN 

ttttt &d mg 3 ttttt 

TEMP = TPIP - DDOT(IR-IRB+1,W(IRB),1,W(IRA+1),1) 
IRA = IRA + (IR-IRB+l) 

END IF 

IRA = IRA + 1 
IF (I .LT. J) W(IR) = TDlP/W(IRA) 

90 IR = IR + 1 

100 CONTINUE 

C ***** Start Debug 4 
C 
C6000 FORMAT(2HO 
C6001 FORMAT(1018) 
C6002 FOlWAT(4D20.11) 
C6010 FORMAT(2HO ,2X,4H IWR.4X.4H IRB.SX.3H IR,4X,4H IRA,6X,2H I, 
C 1 6X.2H J/8X,5H TEMP.13X.7H VSMALL) 
C WRITE(6.6010) 
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C WRITE(6,6001) IWR, IRB, IR, IRA, I, J 
C WRITE(6,6002) TEMP, VSMALL 
C WRITE (6,6000) 
C 

C 
c ***** md Debug 4 ***** 

IF (TEMP .LT. VSMALL) GO 120 
W(IR) = DSQRT(TEMP) 

110 CONTINUE 
GO TO 170 

C INCREASE FURTHER THE DIAGONAL 
C ELEMEWl’ OF G. 

120 W(J) = 1.oM) 
SUMX = 1.ODO 
K = J  

IRA = IR - 1 
130 SUM = O.ODO 

DO 140 I=K, J 
SUM = SUM - W(IRA)*W(I) 
IRA = IRA + I 

140 CONTINUE 
IR = IR - K 

C 
c * * * e *  Star t  Debug 5 *****  
C 

C 

C 

C 
c ***** Star t  Debug 6 *****  
C 
C7000 FORMAT(2HO ) 
C7001 FORMAT(lOI8) 
C7002 FORMAT ( 4D20.11) 
C7010 m T ( 2 H O  ,1X,5H NMAX,4X,4H IWZ,4X,4H IWR,4X,4H M,4X,4H IWD, 
C 1 4X,4H IWX,4X,4H IWAA.5X,3H IA,SX,3H ID,5X,3H II/6X,2H M,6X,2H N, 
C 2 6X.2H I, 5X.3H IR, 6X, 2H J.4X.4H IRB, 4X, 4H IRA, 6X.2H K/9X, 4H SUM, 
C 3 14X,6H W(IR)/) 
C WRITE(6,7010) 
C WRITE(6,7001) NIWX, IWZ, IWR, I W ,  IWD, IWX, IWA, IA, ID, I1 
C WRITE(6,7001) M, N, I, IR, J, IRB, IRA, K 
C WRITE(6.7002) SUM, W(IR) 
C WRITE(6,7000) 

IF (K .LE. 1) GO TO 7700 

c ***** md &bug 5 *****  

K = K - 1  

c 
C e * * * *  m d  M u g  6 *****  
C 

W(K) = SUM/W(IR) 
SUMX = SUMX + W(K)*W(K) 
IF (K .GE. 2) GO TO 130 

C 
C ***** Star t  Debug 7 *****  
C 
C GO TO 7701 
C7700 IBUG = IBUG + 1 
7700 CONTINUE 
CEO10 FoRMAT(20H ***** IBUG = ,151 
C WRITE(6.8010) IBUG 
C7701 CONTINUE 
C 

C 
C * * *e*  md Debug 7 * * e * *  

DIAG = DIAG + VSMALL - TEMP/SUMX 
GO TO 60 

C STORE THE CHOLESKY FACTORISATION IN 
C THE R-PARTITION OF W. 

150 IR = IWR 
Do 160 I=l, N 
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CALL DCOPY (I, G(l,I), 1. W(IR+I*(I-1)/2+1), 1) 
160 C C N I J X E  

C SET 2 THE INVERSE OF THE MATRIX IN 
C R. 
1 7 0 N M = N -  1 

Do 190 I=l, N 
I Z = I W z + I  
CALL DSET (1-1, o.OW, W(I2). N) 
I2 = I2 + N*(I-l) 
IR = IWR + (I+I*I)/2 
W(I2) = l.OW/W(IR) 
IF (I .EQ. N) GO To 190 
IZA = I2 
DO 180 J=I, hM 

IR = IR + I 
SUM = DDCYT((IZ-IZA)/N+1.W(IZA),N,W(IR),1) 
IR = IR + (IZ-IZA)/N + 1 
I2 = I2 + N 
W(I2) = -SUM/W(IR) 

180 mINUE 
190 c(3NTINuE 

C 
C 
C 
C 
C 
C 

ITERC = 1 
I= = 0 
JFINC = -KFINc 

i 
C 
C 
200 1- = 1 

IWS=IhW-N 
CALL DSET (N. O . O W ,  X, 1) 
Do 230 I=l, N 

I w = m W + I  
W(IW) = GRAD(1) 

SET THE INITIAL VALUES OF .%ME 
VARIABLES. ITERC COUNTS THE NUMBER 
OF ITERATIONS. ITREF IS SET TO 
1. OED WHEN ITERATIVE REFINDENT IS 
REQUIRED. JFINC INDICATES WHEZU TO 
TEST FOR AN INCREASE IN F. 

SET x T2 !?.!?EO ?>.El SET w- 
CORRESPONDING RESIDUALS OF THE 
KUHN-?vcKER CQNDITIONS. 

IF (I .GT. NACT) GO TO 230 
W(1) = o.oD0 
IS = MIS + I 
K = IACT(1) 
IF (K .LE. M) GO To 220 
IF (K .GT. MN) GO To 210 

W(IS) = XL(K1) 
GO TO 230 

K l = K - M  

210 K1 = K - MN 
W(IS) = -XU(Kl) 
GO To 230 

220 W(IS) = B(K) 
230 CONTINUE 

XMAG = 0.0W 
VFACT = l.OD+O 
IF (NACT) 390,390,340 

C SET THE RESIDUALS OF THE KUHN-TUCKER 
C OITIONS FOR GENERAL X. 
240 IFLAG = 2 

IWS=IhlW-N 
Do 290 I=l, N 

I W = r n + I  
W(IW) = GRAD(1) 
IF (LQL) GO "0 270 
I D = I W D + I  
W(ID) = 0.OW 
DO 250 J=I, N 

Do 260 J=l, I 
250 W(ID) = W(ID) + G(I,J)*X(J) 

Appendix C: DNSONG1 .FOR - 5 



300 

310 

320 

KK = IACT(K) 
IS = IWS + K 
IF (KK .GT. M) GO TO 310 
W(IS) = B(KK) 
W 300 I=l, N 

IW = Iww + I 
W(IW) = W(IW) - W(K)*A(KK,I) 

W(IS) = W(IS) - X(I)*A(KK.I) 
GO TO 330 
IF (KK .GT. MN) GO TO 320 
K l = K K - M  
IW = IWW + K1 
W(IW) = W(IW) - W(K) 
W(IS) = XL(K1) - X(K1) 
GO M 330 
K 1 z K K - m  
IW = IWW + K1 
W(IW) = W(IW) + W(K) 
W(IS) = -XU(Kl) + X(K1) 

330 -1NUE 
C PRE-MULTIPLY THE VECPOR IN THE 
C S-PARTITION OF W BY THE INVERS OF 
C R TRANSPOSE. 

340 IR = IWR 
IP = IWW + 1 
IPP = IWW + N 
IL = IWS + 1 
IU = Iws + NACT 
DO 350 I=IL, IU 

SUM = DtDT(I-IL,W(IR+1),1,W(IL) ,1) 
I R = I R + I - I L + l  
W(1) = (W(I)-SUM)/W(IR) 

350 CONTINUE 
C SHIFT X TO SATISFY THE ACTIVE 
C CONSTRAINTS AND MAKE THE 
C CORRESFONDING CHANGE TO THE 
C GRADIENT RESIWALS. 

DO 380 I=l, N 
IZ = Iwz + I 
SUM = DtDT(IU-IL+1,W(IL), l.W(IZ) ,N) 
IZ = I2 + (IU-IL+l) *N 
X(1) = X(1) + SUM 
IF (.NCrr.LQL) THEN 

ID = IWD + I 
W(ID) = SUM*DSJM(N-I+1,G(I,I) , L E )  
IW = Iww + I 
W 360 J=1, I 

ID = IWD + J 
W(IW) = W(IW) + G(J,I)*W(ID) 

360 CONTINUE 
ELSE 

W 370 J=1, N 
IW = IWW + J 
W(IW) = W(IW) + SUM*G(I,J) 

370 CONTINUE 

380 COEPTINUE 
END IF 

C FORM THE SCALAR PRODUCT OF THE 
C GRADIENT RESIDUALS WITH 
C EACH COLUMN OF 2 .  

390 KFLAG = 1 
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400 
C 
C 

410 

C 

420 

430 
C 
C 
440 

450 
C 
C 
C 

460 

470 
C 
C 
C 
C 

C 
4 80 

490 
C 

GO To 1260 
IF ~"l' .NE. N) THRJ 

SHIFT X SO THAT IT SATISFIES THE 
=NIX KUHN-TUCKER CCPJDITIONS. 

IL = Iws + NACT + 1 
I Z A  = Iwz + NAcr" 
Do 410 I=l, N 

I2 = IZA + I 
SUM = DDoT(IWW-IL+1,W(IZ) ,N,W(IL),l) 
I2 = I2 + (IWW-IL+l)'N 
X(1) = X(I1 - SUM 

CCPJTINUE 
INPO = ITERC 
IF ~NAcT -EQ. 0) GO TO 440 
IF 

UPDATE THE LAC;RANGE MULTIPLIERS. 
LFLAG = 3 
GO ?.o 1030 
Do 430 K=l. "I' 

I W = I W + K  
W(K) = W(K) + W(IW) 

m I N U E  
REVISE THE VALUES OF 
ITERATIVE REF- 

XMAG. BRANM IF 
IS REQUIRED. 

J m J L G = l  
GO To 1230 
IF (IFLAG .EQ. ITREF) GOTO 

KDROP = 0 
GO To 470 
KDROP = KDROP + 1 
IF (W(KDR0P) .GE. 0.OW) GO 

240 
DELEIT A co"p IF A LAGRANGE 
MULTIPLIER OF AN ~ A L I T Y  

IS NEGATIVE. 

TO 470 
IF (IACI'(KDR0P) .LE. m) CO TO 470 
N u = N A ( 3 T  
M F L A G = l  
GO To 1120 
IF (KDROP .LT. NACT) GO TO 460 

SEEK THE GREATEAST NORMALISED 
coNSl3AIlW VIOLATICN, DISREGARDING 
ANY "HAT MAY BE DUE To CCXWPER 
ROUNDING ERROW. 

CVMAX = O.ODO 

Do 490 K=l, M 
IA=IYYA+K 
IF (W(IA) .GT. O.OD0) 

SUM = MXrr(N,X,l.A(K,l),LDA) - B(K) 
SUMX = -SUM'W(IA) 
IF (K .LE. MEQ) SUMX = lX4BS(.SUMX) 
IF (SOMX .GT. CVMAX) 

TEMP = DAES(B(K)) + IlAlOT(N.X,1,A(K,l),~) 
l"A = TEXP + DABS(SUM) 
IF ("A .GT. TEMP) THEN 

TEMP = TEMP + 1.5DOfD?u3s(SUM) 
IF ('I" .G". TEMPA) 

cvMAx=suMx 
R E s = S U M  
K " = K  

END IF 
EM) IF 

END IF 
END IF 

CONTINUE 

Do 520 K=l, N 
Lmnm= .TRUE. 
IA=IhlA+M+K 
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IF (W(1A) .LE. O.ODO) GO TO 520 

500 

510 

520 
C 

C 
C 
C 

530 
C 

540 

550 

560 
570 

580 

590 

600 
C 
C 
C 
C 
C 

SUM = XL(K) - X(K) 
IF (SUM) 500,520,510 
SUM = X(K) - XU(K) 
LOWER = .FALSE. 
IF (SUM .LE. CVMAX) GO TO 
CVMAX = SUM 
RES = -SUM 
K N E X T = K + M  
IF (LOWER) GO TO 520 
KNEXT=K+MN 

CONTINUE 

INFO = ITERC 
IF (CVMAX .LE. VSMALL) GO TO 

520 

TEST FOR CONVERGENCE 

990 
FU3TURN IF, DUE TO ROUNDING ERRORS, 
THE ACTUAL CHANGE IN X MAY N(Tr 
INCREASE THE OBJECTIVE FUNCTION 

JFINC = JFINC + 1 
IF (JFINC .EQ. 0 )  GO TO 590 
IF (JFINC .NE. IFINC) GO TO 610 
FDIFF = O.ODO 
FDIFFA = O.ODO 
Do 580 I=l, N 

SUM = 2.ODO*GRAD(I) 
SUMX = DABS(SUM) 
IF (LQL) GO TO 550 
ID = IWD + I 
W(ID) = O.ODO 
Do 530 J=I, N 

IX = IWX + J 
W(ID) = W(ID) + G(I,J)*(W(IX)+X(J)) 

CONTINUE 

Do 540 J=1, I 
ID = IWD + J 
TENP = G(J,I)*W(ID) 
SUM = SUM + TEMP 
SUMX = SUMX + DABs(TEMp) 

COrnINUE 
GO TO 570 
Do 560 J=1, N 

IX = IWX + J 
TEMP = G(I,J)*(W(IX)+X(J)) 
SUM = SUM + TEMP 
SUMX = SUMX + DABs(TEMP) 

CONTINUE 
IX = IWX + I 
FDIFF = FDIFF + SUM'(X(1)-W(IX)) 
FDIFFA = FDIFFA + SUMX*DABS(X(I)-W(IX)) 

CONTINUE 
INFO = 0 
SUM = FDIFFA + FDIFF 
IF (SUM .LE. FDIFFA) GO TO 990 
TEMP = FDIFFA + 1.5DOfFDIFF 
IF (TEMP .LE. SUM) GO TO 990 
JFINC = 0 
Do 600 I=l, N 

IX = Iwx + I 
W(1X) = X(1) 

CONTINUE 
FORM THE SCALAR PRODUCT OF THE NEW 
CONSTRAINT NORMAL WITH EACH COLUMN 
OF 2. PARNEW WILL BECOME THE 
LAGRANGE MUL,TIPLIER OF THE NEW 
CONSTRAINT. 

610 ITERC = ITERC + 1 
IWS = IWR + (NAcT+NACr*NAcT)/2 
IF (KNEXP .GT. M) GO TO 630 
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DO 620 I = l ,  N 
I W = M + I  
W ( l W  = A(KNEXT.1) 

620 C(31uTINUE 

630 DO 640 I = l ,  N 
GO TO 680 

I w = I w + I  
W ( I W )  = O.ODO 

640 CONTINUE 
K l = K N E X T - M  
I F  ( K 1  .W. N) GO TO 660 
I W = W + K l  
W ( I W )  = 1.ow 
I2 = IWZ + K l  
DO 650 I = l ,  N 

I S = I w s + I  
W(1S) = W(I2) 
I 2  = I 2  + N 

650 CCNTI"E 

660 K 1  = KNEXT - MN 
GO TO 690 

I W = I w + K l  
W ( I W )  = -1.oDo 
I 2  = Iwz + K 1  
DO 670 I = l ,  N 

I S  = MIS + I 
W ( 1 S )  = -W(IZ) 
I 2  = I 2  + N 

670 CCNTINUE 
GO TO 690 

680 KFLAG = z 
GO TO 1260 

690 PARNEW = 0.OW 
C 
C IAST (N-"-2) SCALAR PRODUCTS 
C EQUAL TO O.OE0. 

APPLY GIVENS ROTATIONS To MAKE THE 

I F  WVJl' .EQ. N )  GO TO 740 
N U = N  
N m d G = l  
GO TO 1180 

C 
C A CONSTRAINT. 

BRANCH IF THERE I S  NO NEED M DELETE 

700 IS = MIS + NAeT 
I F  ~NACT .a. 0) GO TO 9 3 0 .  
SUMA = 0.ow 
SUMB = 0.ow 
I 2  = IWZ + NACX*N 
SWK = DDOT(N,W(IZ+l) ,1 ,W(IZ+1),1)  
DO 710 I = l ,  N 

I 2  = I 2  + 1 
I w = I h w + I  
SUMA = SUMA + W ( I W ) * W ( I Z )  
SUMB = SUMB + I1ABS(W(IW)'W(IZ)) 

710 CONTINUE 
TEMP = SUMB + .lD+O*DAEs(SUMA) 
TEMPA = SUMB + .2DCO*DABS(SUMA) 
I F  (TEMP .LE. SUMB) GO TO 740 
I F  (TlMPA .LE. GOTO740 
I F  (SUMB .GT. Vs;MALL) GO M 720 
GO TO 740 

I A = I w A + K N E X T  
I F  (K"T .LE. M)  SUMC = SUMC/W(IA) 
TEMP = SUMC + .lD+O*DABS(SuMA) 
TEMPA = Sum3 + .2D+O*DABS(SuMA) 
I F  (TEMP .LE. SUMC) GO TO 730 
I F  (TEMPA .LE. TEMP) GO TO 730 
GO TO 930 

720 SUMC = DSQRT(SUMC) 

C CALCULATE THE MULTIPLIERS FOR THE 
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C NEW CONSTRAINT NORMAL EXPRESSED IN 
C TERMS OF THE ACTIVE CONSTRAINT 
C NORMALS. THEN WORK our WHICH 
C CONTRAINT TO DROP. 
730 LFLAG = 4 

740 LFLAG = 1 
GO TO 1030 

GO TO 1030 
C COMPLETE THE TEST FOR LINEARLY 
C DEPENDENT CONSTRAINTS. 
750 IF (KNEXT .GT. M) GO TO 790 

SUMA = A(KNEXT.1) 
SUMB = DABS(SUMA) 
IF (NACT .EQ. 0 )  GO TO 770 
Do 760 K=l, NACT 

KK = IACT(K) 
IW = IWW + K 
TEMP = W(IW)*A(KK,I) 
s u M A = s u M A - T E M P  
SUMB = SUMB + DABS(TEMP) 

W 780 I=l, N 

760 CONTINUE 
770 IF (SUMA .LE. VSMALL) GO TO 780 

TEMP = SUMB + .lD+O*DABS(SuMA) 
TEMPA = SUMB + .2D+O*DABS(SUMA) 
IF (TEMP .LE. SUMB) GO TO 780 
IF (TEMPA .LE. TEMP) GO TO 780 
GO TO 920 

780 CONTINUE 
LFLAG = 1 
Go TO 1080 

790 K1 = KNMT - M 
IF (K1 .GT. N) K1 = K1 - N 
W 850 I=l, N 

SUMA = O.ODO 
IF (I .NE. K1) GO TO 800 
SUMA = 1.ow 
IF (KNEXT .GT. MN) SUMA = -1.ODO 

800 suMB=DABS(SUMA) 
IF (NACT .EQ. 0)  GO TO 840 
Do 830 K=l, NACT 

KK = IACT(K) 
IF (KK .LE. M) GO TO 810 
K K = K K - M  
TEMP = O.ODO 
IF (KK .EQ. I) TEMP = W(IW+KK) 
K K = K K - N  
IF (KK .EQ. I) TEMP = -W(IW+KK) 
GO TO 820 

TEMP = W(IW)*A(KK,I) 
810 IW = I W  + K 

820 s u M A = s u M A - T E M p  
830 SUMB = SUMB + DABS(TEMP) 
840 TEMP = SUMB + .lD+O*DABS(SUMA) 

TEMPA = SUMB + .2D+O*DABS(SUMA) 
IF (TEMP .LE. SUMB) GO TO 850 
IF (TEMPA .LE. TEMP) GO TO 850 
GO TO 920 

850 CONTINUE 
LFLAG = 1 
Go TO 1080 

C BRANCH IF THE CONTRAINTS ARE 
C INCONSISTENT. 

860 INFO = -KNEXT 
IF (KDROP .EQ. 0)  GO TO 990 
PARINC = RATIO 
PARNEW = PARINC 

C m I S E  THE LAGRANGE MULTIPLIERS OF 
C THE ACTIVE CONSTRAINTS. 
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870 IF W?Cl' .EQ- 0) GO To 890 
DO 880 K=l, NACT 

I W = M + K  

IF ( I A C T ( K )  .GT. MEQ) W(K) = nMAxl(O.ODO,W(K)) 
W(K1 = W(K) - PARINC*W(IW) 

880 mINuE 
890 IF (KDFtOP .EQ. 0) GO To 970 

C DELETE THE CONSTRAINT To BE DROPPED. 
C SHIFT THE VECIylR OF SCALAR 
C PFtODUCI'S. THEN, IF APPROPRIATE, 
C MAKE m MORE SCALAR PR0DUc.r 
C O.OEO. 

N U = N A c r + l  
MFLAG=2 
GO To 1120 

900 Iws = Ihls - NAm - 1 
NU = MINO(N,Nu) 
DO 910 I=l, Nu 

I S = I W s + I  
J=IS+NACT 

910 W(IS) = W(J+1) 
N F L A G = 2  
GO To 1180 

C CAZXJULATE THE STEP TO THE VIOLATED 
C m w .  
920 IS = IWS + NAC" 
930 SUMY = W(IS+l) 

m = -REs/suMY 
P A R m  = m/m. 
IF ~NACT .4. 0) GO To 950 

e rs;cLkTE THE m!Es To THE 
C LAC;RANGE MULTIPLIERS, AND REDUCE 
C THE STEP ALmE THE m SEARCH 
C DImION IF NECESSARY. 

L F L A c = 2  
GO M 1030 

940 IF (KMIOP .EQ. 0) GO To 950 
TEMP = 1.OW - RATIO/PARIK 
IF (m .LE. 0.0W) KDROP = 0 
IF (KDROP .EQ. 0) GO TO 950 . 
STEP = RATIO'SUMY 
PARINC = RATIO 
RES = =*RES 

C UPDATE X AND THE LAGRANGE 
C MLTLTIPIERS. DROP A C C N m  IF 
C THE FULL STEP IS TAKDI. 
950 IWY = IWZ + NACI'N 

Do 960 I=l, N 
I Y = I w Y + I  

960 X(1) = X(1) + SEP'W(IY) 
PARNEW = PARNm + PARINC 
IF WC" .GE. 1) GO To 870 

C , ADD THE NEW CONSTRAINT TO THE A C T m  
C SET. 
970 NACT = NACT + 1 

W~NACT) = PARNEW 
IACl'(NACI') = KNEXT 
IA=IWA+KNEXT 
IF (KNMT .GT. MN) IA = IA - N 
W(IA) = -W(IA) 

C ESTIMATE THE MAGNITUDE OF X. l" 
C BEIN A NEW ITERATION, 
C RE-INITILISING X IF THIS MAGNITUDE 
C IS SMALL. 

.FLAG = 2 
GO To 1230 

IF (ITREF) 480,480,240 
980 IF (SUM .LT. (XMXR*XMAG)) GO TO 200 

C INITIATE ITERATIVE REFI- IF IT 
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C HAS NOT YET BEEN USED, OR RETURN 
C AFTER RESTORING THE DIAGONAL 
C ELEMENTS OF G. 
990 IF (ITERC .EQ. 0 )  GO TO 1000 

ITREF = ITREF + 1 
JFINC = -1 
IF (ITREF .EQ. 1) GO TO 240 

1000 IF (."T.LQL) RETURN 
Do 1010 I=l, N 

I D = I W D + I  
1010 G(1,I) = W(ID) 
1020 RETURN 
C THE REMAINIG INSTRUCTIONS ARE USED 
C AS SUBROUTINES. CALCULATE THE 
C LAGRANGE MULTIPLIERS BY 
C PRE-MULTIPLYING THE VECMR IN THE 
C S-PARTITION OF W BY THE INVERSE OF 
C R. 
1030 IR = IWR + ~NACT+NACT*NACT)/2 

I = NACT 
SUM = O.ODO 
GO TO 1070 

SUM = O.ODO 
IF (NACT .EQ. 0 )  GO TO 1060 
W 1050 J=I, NACT 

IW = I W  + J 
SUM = SUM + W(IRA)*W(IW) 

1040 IRA = IR - 1 

1050 IRA = IRA + J 
1060 IR = IR - I 

I = I - l  
1070 IW = IWW + I 

IS = IWS + I 
W(IW) = (W(IS)-SUM) /W(IR) 
IF (I .GT. 1) GO TO 1040 
IF (LFLAG .EQ. 3 )  GO TO 420 
IF (LFLAG .EQ. 4) GO TO 750 

C CALCULATE THE NEXT CONSTRAINT TO 
C DROP. 
1080 IP = Iww + 1 

IPP = IWW + NACT 
KDROP = 0 
IF (NACT .EQ. 0)  GO TO 1110 
DO 1100 K=l, NACT 

IF (IACT(K) .LE. MEQ) GO TO 1100 
IW = I W  + K 
IF ((RES*W(IW)) .GE. O.ODO) GO TO 1100 
TEMP = W(K) /W(IW) 
IF (KDROP .EQ. 0)  GO TO 1090 
IF (-(TEMP) .GE. DABS(RATI0)) GO TO 1100 

1090 KDROP = K 
RATIO = TENP 

1100 CONTINUE 
1110 GO TO (860, 940), LFLAG 
C DROP THE CONSTRAINT IN POSITION 
C KDROP IN THE ACTIVE SET. 
1120 IA = IWA + IACT(KDR0P) 

IF (IACT(KDR0P) .GT. MN) IA = IA - N 
W(IA) = -W(IA) 
IF (KDROP .E4. NACT) GO TO 1170 

C SET SOME INDICES AND CALCULATE THE 
C E L m S  OF THE NEXT GIVENS 
C ROTATION. 

IZ = IWZ + KDROP'N 
IR = IWR + (KDROP+KDROP*KDROP)/2 

IR = IR + KDROP + 1 
TEMP = CMAX~(DABS(W(IR-~)),DABS(W(IR))) 
SUM = TEMP*DSQRT((W(IR-1)/TEMP)**2+(W(IR)/TEMP)**2) 

1130 IRA = IR 
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=CHANGE THE COLUMNS OF R. 

GA = W(IR-l)/= 
GB = W(IR)/SUM 

W 1140 I=l. KDROP 
IRA=IRA+l 
J = IRA - KDROP 
TPIP = W(IR?d 
W(IRA) = W(J) 

C 

1140 W(J) = TR4P 
W(IR) = 0.OW 

WfJ) = SllM 
KDmP = KI3RoP + 1 
Do 1150 I=KcBuIP. Nu 

C APPLY THE ROTATION TO THE ROWS OF R. 

TEMP = GA'W(IRA) + GB*W(IRA+l) 
W(IRA+l) = GA'W(IRA+l) - GB'W(1RA) 
W(1RA) = TEMP 

1150 IRA = IRA + I 
C APPLY THE ROTATION TO THE COLUMNS OF 
C 2 .  

Do 1160 I=l, N. 
IZ = I2 + 1 
J = I Z - N  - = GA*W(J) + GB'W(1.Z) 
W(1Z) = GA*W(IZ) - GB*W(J) 

1160 W ( J )  = TR4P 
C FUWISE IACT AND THE LAGRANGE 
C MULTIPLIERS. 

IAcr(KDR0P-1) = IACT(KDR0P) 
W(KDR0P-1) = W(mR0P) 
iF iiU3itGF .LT. X&C; GC % 1130 

Go 10 (240, 900). MF'LAG 
1170 "l' = NACT - 1 

APPLY GIVENS ROTATION TO REDUCE SOME C 
C OF THE SCALAR mconVerS IN THE 
C S-PARTITION OF W To O.OE0. 
1180 IZ = Iwz + NU'N 
1190 I2 = I2 - N 
1200 IS = Iws + Nu 

N u = N u - l  
IF (Nu -EQ. NAer) GO TO 1220 
IF (W(IS) .EQ. 0.OW) GO TO 1190 
TPIP = ~ 1 ( ~ ( W ~ I S - 1 ~ ~ . ~ ~ W ~ I S ~ ~ ~  
SUM = TEMP*DSQRT((W(IS-l)/TEMP)**2+(W(IS)/TEMP)**2) 
GA = W(IS-l)/SuM 
GB = W(IS)/SuM 
W(1S-1) = SUM 
Do 1210 I=1, N 

K = I Z + N  - = GA'W(I2) + GB*W(K) 
W(K) = GA*W(K) - GB*W(IZ) 
W(1Z) = TEMP 

1210 IZ = IZ - 1 

1220 GO To (700, 920). NFLAG 
Go TO 1200 

C CALCULATE THE MAGNITUDE OF X AN 
C REVISE XMAG. 
1230 SUM = 0.OW 

W 1240 I=l, N 
SUM = SUM + naBS(X(1) )*vFACl"(DABS(GRAD(I) )+DABS(G(I, I) *X(I) ) ) 
IF (LQL) GO TO 1240 
IF (SUM .LT. 1.OD-30) GO TO 1240 
WAC3 = l.OD-1O*VFACI' 
SUM = 1.oD-1o*suM 
XMAG = l.OD-lO*XMAG 

1240 CONTINUE 
1250 XMAG = DM&Xl(XMAG,SUM) 

GO To (450, 980). JFLAC. 
C PRE-MULTIPLY THE VECPOR IN THE 

Appendix C: DNSONG1 .FOR - 13 



W-PARTITION OF W BY Z TRANSPOSE. c 
1260 JL = I W  + 1 

IZ = Iwz 
DO 1270 I=l, N 

IS = IWS + I 
W(IS) = O.ODO 
IWWN = I W  + N 
W(1S) = DMYT(IWWN-JL+l,W(JL),1,W(IZ+1),1) 
IZ = IZ + (IWWN-JL+l) 

1270 COhTIhUE 
Go TO (400, 690). KFLAG 
REIVRN 
END 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

By Permission of Her Most Gracious Majesty 

Elizabeth R 

Jane Leyland presents 

"Ye Olde Crystal Balle Magic Incantation' 

An Elizabethan witchcraft and sorcery product 
which defines Ye Olde Magic Control Wand. 

***** This is a Main Driver Program for the optimal Neural-Network 
Closed-Loop Trajectory Controller described in: 

1. Leyland, Jane A . ,  'A Closed-Loop opthl Neural-Network 
Controller to optimise Rotorcraft Aercmechanical Eehaviour", 

to be published as a NASA Technical Memorandum. 

2 .  Leyland, Jane A. ,  'A Higher Harmonic Optimal Controller 
to optimise Rotorcraft Aeromechanical Behaviour', NASA 
Technical Maaorandum 110390, March 1996. 

***** Start PROGRAM OPT'IM" ***** 

***** The '[LEyuIND.0~IM"]TYPEcoM.INC9 File is Included here. 
This file contains the statements which establish and define: 
1) the Principal CCmoN Blocks; 2 )  the Data TYPE of the 
Principal Parameters, Arrays, and Vectors: and 3) the 
DIMENSION of the Principal Arrays and Vectors of the 
OPTIMNN system. 

INCLWE ' [LEYLAND.OE'TUaa3lWF'Fl3X.IX' 

INlEGER'4 ICASE. JERR 

INIT, TRAJ 
REAL*8 INIT, TRAJ 

1071 MRMAT(43HO ***** NORMAL EXIT FROM OPTIMNN * * * * * / I  
1072 FQmT(42HO ***** ERROR EXIT FROM OETIMNN * * * * * I / )  
C 
C 
C ***** Initialisation ***** 
c 

RTD = 360.000/'IwDPI 
ICASE = 1 
JERR = o  

C 
C ***** Run Case Number 'ICASE" 
C 

100 C r n I N U E  

CALL INIT(JERR) 

CALL TRAJUERR) 

IF (JERR .NE. 0) 

C 

C 
GO To 996 
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c 
996 WRITE(6,1072) 

WRITE (8,1072 
J E R R = o  
Go To 998 

C 
c *****  Normal &it ***** 
c 
997 WRITE (6,1071) 

WRITE(8,1071) 
C 
C * * * * *  Check for subsequent case ***** 
C 
998 IF (MULT .LE. 0) GO To 999 

MULT = 0 
ICASE = ICASE + 1 
Go To 100 

END 
999 STOP 

C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C234567890123456789012345678901234567890~234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 

c 
C 
C 

C 
C 

C 
C 

***** This subroutine: 1) reads changes to the Data Set Values of 
the INPUT DATA via NAMELIST CDATA, and then 2 )  initialises 
the data required to execute the trajectory simulation. 

h**** Start SUBRWTINE INIT ***** 

h**** The .[LEyLAND.OpTIMNNlTYPEcaM.INC' File is Included here. 
This file contains the statements which establish and define: 
1) the Principal CCMKN Blocks; 2)  the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3) the 
DIMENSION of the h-incipal Arrays and Vectors of the 
OPTIMNN System. 

INCLUDE ' [LEyLAND.0PMM"1TYP~.1NC' 

h**** The g[ILMLAND.OPTIMNNIINITDAT.INC' File is Included here. 
This file contains the statements which define the initially 
set Default Values of the 'NAMELIST CDATA' INPUT Parameters 
and the Values of the Internally Set Constants of the OPPIMNN 
System. 

INCLUDE ' [ L E Y I A N D . O P T ~ I I N I T D A T . I N C '  

INrEEER'4 JERR 

1000 FORMAT(2HO 1 
1001 FORMAT(2Hl 1 
1071 LTlRMAT(40HO ***** EXIT F X M  INIT * * * * * / / )  
1072 FORMAT(39HO ***** ERROR MIT FRc)M INIT ***** / / )  
7011 FORMAT (4D20.7  ) 

C 
C 
C ***** Pre-Input Data Initialisation ***** 
C 

C 
C ***** Read INPWT Data with NAMELIST CDATA ***** 
C 

C 
C ***** Write I"fi Data ***** 
C 

m = o  

READ(7,CDATA) 
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C 
C ***** Post-Input 
C 

IF (JERR .NE. 0)  
Go To 997 

C 
C ***** Error Exit 
C 
996 WRITE(6,1072) 

WRITE(8,1072) 
GO To 999 

C 

Data Initialisation ***** 

GO TO 996 

*****  

C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 

C 
C 

***** This subroutine: 1) initialises for trajectory propagation, 
2) provides phase cut-logic, 3) reads reference trajectory 
data, 4) updates Neural-Network parameters, 5)  updates the 
control Vector. -and 6) propagates the trajectory. 

***** Start SUBROUTINE TRAJ ***** 

***** The ~[LEyLAM).O€TIM"lTYPEcoM.INc' File is Included here. 
This file contains the statements which establish and define: 
1) the Principal CCMMXJ Blocks; 2 )  the Data TYPE of the 
hrincipal Parameters, Arrays, and Vectors; and 3) the 
DIMENSIW of the Principal Arrays and Vectors of the 
O P T I m N  System. 

INCLm ' [ L E x L A N D . O P T I M N N I l Y P ~ . I N c '  

1000 FORMAT(2HO ) 
1001 FORMAT(2H1 ) 
1010 FORWiT(35Hl *+*** STAF3 TRAJEcroRY * * * * * / / I  
1011 FORMAT(20HO ***** FYUSE = ,12,3X,llH TABS = ,D13.5,3X, 

1 11H TREL = ,D13.5/25X,llH PINDX = ,D13.5) 
1071 FORMAT(4OHO ***** NORMAL EXIT E'RCM TRAJ ***** / / )  
1072 FDRWiT(39HO ***** ERROR EXIT FROM TRAJ ***'*//) 
1096 FORMAT(31HO ***** TRAJ DEBUG POIN" = ,I3,15H, "ID = , 

1097 FORWiT(31HO ***** TRAJ DEBUG POINT = ,13,15H, PHASE = ,  

1098 FORWiT(2X.6112) 
1099 FORMAT(31HO ***** TRAJ DEBUG POI" = ,13,15H, PHASE = ,  

1 I3.8H *****) 
7011 FORWiT(4D20.8) 

1 I3,8H *****) 

1 I3,15H, ICODE = ,I3,8H ***** ) 

C 
C 
C ***** INITIALISATION ***** 
C 

101 

C 

C 

C 

m = o  
IF (TF'INL-TINIT) 996, 996, 101 
GO M 996 
WRITE(6.1010) 
WRITE(8.1010) 
DFREQO = 0 
lMAx = o  
" u p 0  = o  
TABS = TINIT 
I m p  = 1  
IF (TLFINL-TLINIT) 141, 141, 102 

C ***** Initialisation for the Learning Trajectory Phase ***** 
C 
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102 

114 

115 
116 

103 

104 

C 

C 
105 

C 

106 

107 
108 
109 

C 

110 

111 

C 

C 

IPHASE = 1 
DELAY =LDELAY 
DFREQ = D L m  
DLGTH =DLLGTH 
"ID = "LID 
IF ("ID-1) 115, 114, 115 
"UP = o  
GO TO 116 
"UP = 1  
TCUT = TLFINL 
TSTEP = TLSTEP 
IF (TLTYPE) 103, 103, 104 
TABS = TLINIT 
TREL = Z E R O  
T = TABS 
GO TO 105 
TREL = TLINIT 
TABS = TINIT + TLINIT 
T =TREL 

TD(1) = T 

IBUG = 105 
WRITE(6,lOOO) 
WRITE(8.1000) 
WRITE(6.1099) IBUG, IPHASE 
WRITE(8.1099) IBUG, IPHASE 
~~ITE(6,1000) 
WRITE(8,1000) 
WRITE(6.7011) T. TABS, TREL 
WRITE(8.7011) T, TABS, TREL 
WRITE(6.1000) 
WRITE(8.1000) 

IJK = o  
NIJKCVL = 0 
Do 109 K=l,NK 
M3 108 I=l.NI(K) 
Do 107 J=l,NJ(K) 
IF (IJKCVL(1,J.K)) 107, 107, 106 
IJK = IJK + 1 
cMAXNNL(1JK) = AMAX"L(I.J,K) 
CMINNNL(1JK) = AMINNNL(I,J,K) 
CVSNNL(1JK) = SCV"L(I,J,K) 
CONTINUE 
CONTINUE 
CONTINUE 
NIJKCVL = IJK 

JJJ = 0 
NJJECL = 0 
Do 111 J=l,NL2(2) 
IF (JJECL(J)) 111, 111, 110 
JJJ = JJJ + 1 
WNNL(JJJ) = WI"NL(J) 
CONTINUE 
NJJECL = JJJ 

NCONNNL = 0 

C ***** Definition of the Initial Data Values for the Sliding Window 
C Table (L = 1). 
C 

CALL STATE(XD(1.1) ,YD(l,l) ,JERR) 
IF (JERR .NE. 0)  GO TO 996 
TD(1) = T 

C 
C 

IBUG = 111 
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C 
142 

171 
172 
173 

174 

175 
176 

143 

144 

C 

C 
145 

C 

146 

wRITE(6,lOOO) 
WRITE ( 8,1000 ) 
WRITE(6,1099) IBUG, IPHASE 
WRITE(8,1099) IBUG, IPHASE 
wRITE(6.1000) 
WRITE (8,1000) 
WRITE(6.7011) T, TABS, TREL 
WRITE(8,7011) T, TABS, TREL 
WRITE(6.1000) 
wRITE(8.1000~ 
WRITE(6.7011) (XD(I.11, 1=1,NL2(1)) 
WRITE(8.7011) (W(I,l), I=l,NL2(1)) 
WRITE(6,7011) (YD(J,l), J=l,NL2(2)) 
WRITE(8.7011) (YD(J.l), J=l,NL2(2) 
WRITE(6,lOOO) 
wRITE(8.1000) 

Go To 181 
C 

C 

C 
C ***** Initialisation for the Controlled Trajectory Phase ***** 

141 IF (TCFINL-TCINIT) 997, 997, 142 

IPHASE = 5 
GO To (171,173,173,171). SIMDDC 
IF (ISEPO) 173, 172, 173 
ISmP = 1 
ISmP = ISTEP + IsmPo 
DELAY =CDELAY 
DFRMl =DCFREQ 
DLL;TH =DCIGIH 
NNID = NNCID 
IF (NNID-1) 175, 174, 175 
"UP = o  
Go To 176 
"up = 1  
TCUT =mINL 
TWEP = x m  
IF W.X"E) 143, 143, 144 
TABS = TCINIT 
TREL =ZERO 
T = TABS 
GO To 145 
TREL = TCINIT 
TABS =TABS+TREL 
T =TREL 

TD(1) = T 

IBUG = 145 
WRITE (6,1000) 
WRITE(8.1000) 
wRITE(6,1099) IBUG, IPHASE 
wRITE(8,1099) IBUG, IPHASE 
WRITE(6.1000) 
wRITE(8.1000) 
WRITE(6.7011) T. TABS, TREL 
WRITE(8.7011) T, TABS. TREL 
WRITE(6.1000) 
WRITE(8.1000) 

IJK = o  
NIJKCVC = 0 
DO 149 K=l,NK 
Do 148 I=l,NI(K) 
DO 147 J=l.NJ(K) 
IF (IJKCVC(1,J.K)) 147, 147, 146 
IJK = IJK + 1 
CMAXNNC(1JK) = AMAX"C(I,J,K) 
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147 
148 
149 

C 

150 

151 

C 

C 

156 

157 

C 

158 

159 

C 

160 
161 

C 

CMI"NC(1JK) = AMIN"C(I,J,K) 
cvs"C(IJK) = SCVNNC(1,J.K) 
CONTINUE 
CONTINUE 
CONTINUE 
NIJKCVC = IJK 

JJJ = 0 
NJJECC = 0 
DO 151 J=l,NL2(2) 
IF (JJECC(J)) 151, 151, 150 
JJJ = JJJ + 1 
WNNC(JJJ) = Wl"NC(J) 
CONTINUE 
NJ3;IJM3C = JJJ 

" N N C  = 0 

I1 = 0 
NICV = 0 
Do 157 I=l,NL2(1) 
IF (ICV(1)) 157, 157, 156 
I1 = I1 + 1 
cMAxC(I1) = AMAXC(1) 
CMINC(I1) = AMINC(1) 
cvSC(I1) = sCvC(1) 
CONTINUE 
NICV = I1 

JJ = 0 
NJOC = 0 
Do 159 J=l,NL2(2) 
IF (JEC(J)) 159, 159, 158 
JJ = JJ + 1 
WC(JJ) = WTC(J) 
CONTINUE 
NJEC = JJ 

I11 = 0 
"c = 0 
Do 161 I=l,NL2(1) 
IF (ICONC(1)) 161, 161, 160 
I11 = I11 + 1 
COrnINUE 
NCONC = I11 

C +****  Definition of the Initial Data Values for the Sliding Window 
C Table ( L  = 1). 
C 

CALL S"ATE(XD(1.1) ,YD(l,l) ,JERR) 
IF (JERR .NE. 0)  GO TO 996 
TD(1) = T 

C 
c 

IBUG = 161 
WRITE (6,1000) 
WRITE(8.1000) 
WRITE(6.1099) IBUG, IPHASE 
WRITE(8.1099) IBUG, IPHASE 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE(6,7011) T, TABS, TREL 
WRITE(8,7011) T, TABS, TREL 
WRITE(6.1000) 
WRITE(8,lOOO) 
WRITE(6.7011) (XD(I,l), I=l,NL2(1)) 
WRITE(8,7011) (XD(I,l), I=l,NL2(1)) 
WRITE(6.7011) (YD(J,l), J=l,NL2(2)) 
WRITE(8,7011) (YD(J.1). J=l,NL2(2)) 
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WRITE (6,1000) 
WRITE(8.1000) 

C 

C 
c ***et (JJT LOGIC ***** 

181 ICUT = 0 

C 
C 
200 

C 
C 
C 
C 
C 
C 
C 

201 
202 

203 
204 

C 205 
C 
C 
205 

206 
2 07 

C 

IBUG = 200 
WRITE (6,1000 
WRITE (8,1000) 
WRITE(6.1099) IBUG, IPHASE 
WRITE(8.1099) IBUG, IPHASE 
WRITE(6,lOOO) 
WRITE 18,1000) 
WRITE(6.7011) T, TABS, TREL 
WRITE(8.7011) T, TABS, TREL 
WRITE(6,10001 
WRITE(8,lOOO) 

IF (T-TCUT) 300, 202, 201 
T = T C U T  
I r n  = 1 
N N u P = o  
IF (IPHASE) 996, 996, 203 
GO TO (204,204,205,996,206,206,207,996). IPHASE 
IPHASE = 3 
DFREQO = 1 
D L G l " = D L L G I H .  
" U P 0  = 1  
a m  =DLLGpH 
GO TD 300 
IPHASE = 7 
CVUP = o  
DLGl" =DCLGTH 

READ TRAJEcroRY MTA ***** c ***** 
C 
C 
300 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

301 
C 
C 302 
C 303 
C 304 
C 
C 
C 305 
C 
C 306 
C 

IBUG = 300 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE(6.1099) 
WRITE(8.1099) 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE(6,7011) 
WRITE(8.7011) 
WRITE~6.1000) 
WRITE(8.1000) 
WRITE(6,7011) 
WRITE(8,7011) 
WRITE (6,7011) 
WRITE (8,7011 1 
WRITE(6,lOOO) 
WRITE(8.1000) 

IBUG, IPHASE 
IBUG, IPHASE 

T, TABS, TREL 
T, TABS, TREL 

IF (DFREQ) 996, 996, 301 
DATAR = J'MOD(ISTEP-1,DFREQ) 
IF (DATAR) 302, 304, 302 
IF (IPHASE) 996, 996, 303 
GO TO (600,600,600,996,511,511,511,996). IPHASE 
IF (IPHASE.NE.5 .OR. N"O.EQ.0) GO TO 305 
GO To 500 

ISTEP = 1 + (ISTEP - l)/D- 
IF (DELAY-LFEP) 306, 302, 302 
IF (IPHASE.NE.5 .OR. DFREQO.W.0) GOT0 321 
DFREQO = 0 
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C GO TO 500 

IF (DATAR) 302, 305, 302 
302 IF (IPHASE) 996, 996, 303 
303 GO TO (600,600,600,996,511,511,511,996). IPHASE 

305 LSTEP = 1 + (ISTEP - 1)/DFREQ 
C 

IF (DELAY-LSTEP) 321, 302, 302 
C 
321 IF (LMAX-DLGTH) 323, 324, 322 
322 LMAX = DLGTH 

GO TO 324 
323 W = W +  1 

IF (LMAX-1) 996, 370, 324 
C 
C *****  Advance the Data Values for the Sliding Window Table 
C (L = 1 to LMAX). 
C 
324 W 330 L = 1, LMAX-1 

LL=LMAx-L 
TD(LL+1) = TD(LL) 
DO 325 I = 1, NL2(1) 
XD(I,LL+l) = XD(I,LL) 

Do 326 J = 1, NLZ(2) 
YD(J,LL+l) = YD(J.LL) 

325 CONTINUE 

326 CONTINUE 
330 CONTINUE 

C 
c ***** Definition of the First Set (L = 11 of Data Values for the 
C Sliding Window Table. 
C 
370 CALL STATE(XD(l,l),YD(l,l) ,JERR) 

IF (JERR .NE. 0 )  GO TO 996 
TD(1) = T 

IBUG = 370 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE(6.1099) IBUG, IPHASE 
WRITE(8,1099) IBUG, IPHASE 
WRITE(6,lOOO) 
WRITE(8.1000) 
WRITE(6.7011) T, TABS, TREL 
WRITE(8.7011) T. TABS, TREL 
WRITE(6,lOOO) 
WRITE(8,lOOO) 

C 

C 
C * * * * *  Determine State from Neural-Net Model ***** 
C 

Do 373 I = 1,NL2(1) 
XN(1) = xD(I.1) 

CALL STATE"(XN,YN,JERR) 
WRITE(6.7011) (XN(I), I=l,NL2(1)) 
WRITE(8.7011) (XN(I), I=l,NL2(1)) 
WRITE(6.7011) (YN(J), J=l,NL2(2) 1 
WRITE(8.7011) (YN(J), J=l,NL2(2) 
WRITE(6,lOOO) 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE(8,lOOO) 
DO 969 L=l,LMAX 
WRITE(6,7011) (XD(1.L). I=l,NL2(1)) 
WRITE(8,7011) (XD(I,L), I=l,NL2(1)) 
WRITE(6,7011) (YD(J,L), J=l,NL2(2)) 
WRITE(8.7011) (YD(J,L), J=l,NL2(2)) 
WRITE(6.1000) 
WRITE (8,1000) 

373 CONTINUE 
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969 c€"INUE 
WRITE (6,1000) 
WRITE(8,lOOO) 

C 
IF ("ID) 371, 371, 400 

371 IF (IPHASE) 996, 996, 372 
372 GO To (600,600,600,996,500,500,500,996). .IPHASE 

C 
c ***** e**** 

C 
C 
400 IBUG = 400 

WRITE(6.1000) 
WRITE (8.1000) 
WRITE(6,1099) IBUG, IPHASE 
WRITE(8,1099) IBUG, IPHASE 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

WRITE ( 6,1000 1 
WRITE(8.1000) 
WRITE (6,1098) 
WRITE ( 6,1098 
WTE (6,1098) 
WRITE(8.1098) 
WRITE (8.1098) 
WRITE(8,1098 
WRITE ( 6,1000 
WRITE(8.1000) 
WTE (6,1098) 

WRITE (8,1098) 

WRITE (6,1098 1 

WRm(8.1098) 

WRITE (6,7011) 
WRITE ( 8,7 011 ) 

1 

1 

1 

1 

IsrEP, 
DFREQO , 
ISTEP. 
DFREQO , 
IsrEP , 
DFREQ. 
I=. 
DFREQ. 
T. 
T. 

IF ("ID) 500, 500. 401 
C 401 IF ("UP) 500, 402, 500 
C 402 IF (IRIASE.NE.5 .OR. NNUPO.EQ.0) GO To 403 
c " U P o = o  
C GO To 500 
401 IF ("UP) 500, 403, 500 
403 IF (IPHASE) 996, 996, 404 
404 GO To (411,411,411,996,421,421.996). IPHASE 

c 
C ***** Neural-Net op th isa t ion  During the Learning Trajectory Phase ***** 
C 
411 ICVDEF = 1 

1 m E F  = 1 
CALL cwcTR~wuM.JERR) 
IF (JERR .NE. 0) GO TO 996 
DO 412 IJK = 1,NIJKCVL 
CvO(1JK) = Cv(IJK) 

412 CONPINUE 
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c WRITE(8,7011) (XD(I,L), I=1,NL2(1) 1 
C WRITE(6.7011) (YD(J,L), J=l,NL2(2)) 
C WRITE(8.7011) (YD(J,L), J=l,NL2(2)) 
C WRITE(6,lOOO) 
C WRITE(8,lOOO) 
C 971 CONTINUE 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 
C 
C 

WRITE(6,7011) (CVO(IJK), IJK=1,NIJKCVL) 
WRITE(8,7011) (CVO(IJK), IJK=l,NIJKCVL) 
~~ITE(6,1000) 
WRITE(8.1000) 

***** ICODE is the IMSL Informational Error Code Number ***** 

ICODE = 1 indicates that the Search Direction is Uphill. 
ICODE = 2 indicates that the Line Search required more 

than 5 mction Calls. 
ICODE = 3 indicates that the Maximum Number of Iterations 

were Exceeded. 
ICODE = 4 indicates that the Search Direction vector is 

close to being a Zero vector. 

CALL ERsET(0,l.O) 
ICODE = 0 
CALL DNCONF (J", NCONNNL, 0, NIJKCVL, C V O  , CVBDNNL, CMINNNL, CMAXNNL, 

ICODE = IERCD( ) 
1 CVS"L,OUT"L,MITNNNL,CV, PINDX) 

IBUG = 489 
WRITE(6,lOOO) 
WRITE (8,1000) 
WRITE(6,1097) IBUG, IPHASE, ICODE 
WRITE(8.1097) IBUG, IPHASE, ICODE 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE(6.7011) T, TABS, TREL 
WRITE(8.7011) T, TABS, TREL 
WRITE(6,lOOO) 
WRITE(8,lOOO) 

*****  Determine State from Neural-Net Model ***** 

DO 413 I = 1,NL2(1) 
=(I) = XD(1,l) 

CALL STATE"(XN.YN.JERR) 
WRITE(6,7011) (XN(I), I=l,NL2(1)) 
WRITE(8.7011) (XN(I), 1=1,NL2(1)) 
WRITE(6,7011) (YN(J), J=l,NL2(2)) 
WRITE(8,7011) (YN(J), J=l,NL2(2)) 
WRITE(6,lOOO) 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE(8,lOOO) 
DO 972 L=l,LMAx 
WRITE(6.7011) (XD(I,L), I=l,NL2(1)) 
WRITE(8,7011) (XD(I,L), I=l,NL2(1) 
WRITE(6.7011) (M(J,L), J=l,NL2(2)) 
WRITE(8.7011) (M(J,L), J=l,NL2(2)) 
WRITE(6.1000) 
WRITE(8.1000) 

WRITE(6.7011) (CV(1JK). IJK=l.NIJKCVL) 
WRITE(8.7011) (CV(IJK), IJK=l,NIJKCVL) 
WRITE(6,lOOO) 
WRITE(8,lOOO) 
WRITE ( 6,7011 ) PINDX 
WRITE(8.7011) PINDX 
WRITE(6,lOOO) 

413 CONTINUE 

972 CONTINUE 
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WRITE (8,1000) 

GO TO 500 
C 

C 
C ***** Neural-Net Optimisation During the Controlled Trajectory Phase *** 
C 
421 

422 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 973 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 
C 
C 

IWX: = 422 
wRITE(6.1000) 
WRITE(B,lOOO) 
wRITE(6,1099) IBUG, IPHASE 
WRITE(8,1099) IBUG, IPHASE 
WFUTE(6.1000) 
WRITE (8,1000) 
WRITE(6.7011) T. TABS. TREL 
WRITE(8.7011) T. TABS, TREL 
WRITE(6.1000) 
WRITE (8,1000) 
Do 973 L=1,m 
WRITE(6.7011) (W(I,L), I=l,NL2(1) 1 
WRITE(8,7011) (W(I,L), I=l,NL2(1)) 
WFUTE(6.7011) (YD(J,L), J=l,NL2(2) 
wRITE(8,7011) (YD(J,L), J=l,NL2(2) 
WRITE(6,lOOO) 
WRITE(8.1000) 
CONTINUE 
WRITE(6.7011) (CvO(IJK), IJK=l,NIJKCvL) 
WRITE(8.7011) (CVO(IJK), IJK=l.NIJKCvL) 
WRITE(6.1000) 
WRITE (8,1000) 

***** ICODE is the DEL Informational Error Code Number ***** 

ICODE = 1 indicates that the Search Direction is Uphill. 
ICODE = 2 indicates that the Line Search required more 

than 5 Function Calls. 
ICODE = 3 indicates that the Maximum Number of Iterations 

were Exceeded. 
ICODE = 4 indicates that the Search Direction vector is 

close to being a Zero vector. 

CALL ERSGT(O,1,0) 
ICODE = 0 
CALL E@KGNF (J"W,"NNc, O,NIJKCVC,CVO,CVBI3JNC, CMINNNC, CMAXNNC, 

ICODE = IERCDO 
1 cvs"c.0uT"c.MITN"c.cv.P~) 

IBUG = 499 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE(6,1097) IBUG, IPHASE, ICODE 
WRITE(8.1097) IBUG, IPHASE, ICQDE 
WRITE (6,1000) 
WRITE (8,1000) 
WRITE(6.7011) T, TABS. TIEL 
WRITE(8,70111 T. TABS. TREL 
WRITE (6,1000) 
WRITE (8,1000) 

***** Determine State from Neural-Net Model ***** 
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423 

974 

C 

DO 423 I = 1,NL2(1) 
XN(1) = xD(I.1) 
CONTINUE 
CALL STATE"(XN,YN.JERR) 
WRITE(6.7011) (XN(I), I=l,NL2(1)) 
WRITE(8.7011) (XNN(I), I=l,NL2(1)) 
WRITE(6,7011) (YN(J), J=l,NL2(2) 1 
WRITE(8,7011) (YN(J), J=l,NL2(2)) 
WRITE(6,lOOO) 
WRITE16,lOOO) 
WRITE(8,lOOO) 
WRITE(8,lOOO) 
Do 974 L=l,LIWx 
WRITE(6,7011) (xD(1,L). I=l,NL2(1)) 
WRITE(8,7011) (xD(I,L), I=l,NL2(1)) 
WRITE(6,7011) (YD(J,L), J=l,NL2(2)) 
WRITE(8.7011) (YD(J,L), J=l,NL2(2)) 
WRITE(6,lOOO) 
WRITE(8,lOOO) 
CONTINUE 
WRITE(6,7011) .(CV(IJK), IJK=l,NIJKCVL) 
WRITE(8.7011) (CV(IJK), IJK=l,NIJKCVL) 
WRITE (6,1000 
WRITE(8,lOOO) 
WRITE(6.7011) PINDX 
WRITE (8,7011 ) PINDX 
WRITE(6,1000) 
WRITE ( 8,1000 ) 

C 
C ***** CONTROL VECTOR UPDATE ***** 
C 
c 
500 IBUG = 500 

WRITE(6,lOOO) 
WRITE(8,lOOO) 
WRITE(6,1099) IBUG, IPHASE 
WRITE(8,1099) IBUG, IPHASE 

IF (IPHASE) 996, 996, 501 
C 

501 GO TO (600,600,600,996,502,502.996). IPHASE 
502 IF (CVTID) 511, 511, 503 
503 IF (CWP) 511, 504, 511 

C 
C *****  Control Optimisation During the Controlled Trajec tory  Phase * * * * *  
C 
504 

505 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

ICVDEF = 5 
IECDEF = 3 
CALL cwrn(xD(1.1) ,JERR) 
IF (JERR .NE. 0)  GO "0 996 
Do 505 I1 = 1,NICV 
cvO(I1) = Cv(I1) 
CONTINUE 

IBUG = 505 
WRITE (6,1000 1 
WRITE(8.1000) 
WRITE(6,1099) IBUG, IPHASE 
WRITE(8.1099) IBUG, IPHASE 
WRITE(6.1000) 
WRITE(8.1000) 
WITE(6,7011) T, TABS, TREL 
WRITE(8.7011) T, TABS, TREL 
WRITE(6,lOOO) 
WRITE(8.1000) 
Do 975 L=l,LMAX 
WRITE(6,7011) (XD(1.L). I=l,NL2(1)) 
WRITE(8,7011) (XD(I,L), I=l,NL2(1)) 
WRITE(6.7011) (YD(J,L), J=l,NL2(2)) 
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C wRITE(8.7011) (YD(J.L 
C WRITE(6.1000) 
c WRITE(8,1000) 
c 975 comINuE 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 
C 
C 

WRITE ( 6,7011 ) ( N O  ( I1 
wRITE(8,7011) (CVOIII 
WRITE(6,lOOO) 
WRITE(8.1000) 

, II=l,NICV) 
, II=l,NICV) 

***** ICODE is the IMSL Informational Error Code Number ***** 

ICQDE = 1 
ICODE = 2 

ICODE = 3 indicates that the Maximum Number of Iterations 

ICODE = 4 indicates that the Search Direction vector is 

indicates that the Search Direction is uphill. 
indicates that the Line Search required more 
than 5 Function Calls. 

were Exceeded. 

close to being a Zero vector. 

***** Determine State from Neural-Net Model ***** 

DO 509 I = 1,NL2(1) 
XN(1) = xD(I.1) 

CALL STATE"(XN.YN.JERR) 
WRITE(6.7011) (XN(I), I=l,NL2(1) 
WRITE(8.7011) (XN(1). I=I,NL2(1) 
WRITE(6.7011) (YN(J), J=l,NL2(2) 
WRITE(8.7011) (YN(J), J=1,NL2(2) 
WRITE(6.1000) 
WRITE(6,lOOO) 
WRITE (8,1000) 
WRITE(8.1000) 
DO 976 L=l.LNAX 

509 CONTINUE 

(CV(II), II=l,NICV) 
(CV(II), II=l,NICV) 

PINDX 
PINDX 

C 
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c 
IF (UPDATE) 511, 511, 506 

C 
c ***** Update the First Set (L = 1) of the Sliding Window Table 
C (i.e., W(I.1) and YD(J,l) to those values determined by 
C the Current Control Optintisation (i.e., XN(1) and YN(J)). ***** 
C 
506 DO 507 I = 1, NL2(1) 

W ( I . 1 )  = XN(1) 
507 COW"INUE 

DO 508 J = 1, NL2(2) 
YD(J.1) = YN(J) 

508 CONTINUE 

511 IBUG = 511 
C 

WRITE(6.1000) 
~~ITE(8.1000) 
WRITE(6.1097) IBUG, IPHASE, ICODE 
WRITE(8.1097) IBUG, IPHASE, ICODE 
WRITE(6.1000) 
WRITE (8,1000) 
WRITE(6.7011) T, TABS, TREL 
WRITE(8.7011) T, TABS, TREL 
WRITE (6,1000) 
WRITE(8.1000) 

C 
C ***** Determine State from Neural-Net Model ***** 
C 

DO 510 I = 1,NL2(1) 
m(I) = W(I.1) 

CALL STATENN(XN,YN,JERR) 
WRITE(6.7011) (XN(I), I=l,NL2(1)) 
WRITE(8.7011) (XN(I), I=l,NL2(1) 1 
WRITE(6.7011) (YN(J), J=l,NL2(2)) 
WRITE(8.7011) (YN(J), J=l,NL2(2) 1 
WRITE(6.1000) 
WRITE ( 6,lO 00 ) 
~~ITE(8.1000) 
WRITE(8.1000) 
DO 970 L=l.LMAx 
WRITE(6,7011) (W(I,L), I=l,NL2(1)) 
WRITE(8,7011) (XD(I,L), I=l,NL2(1)) 
WRITE(6.7011) (YD(J,L), J=l,NL2(2)) 
WRITE(8.7011) (YD(J.L), J=l,NL2(2)) 
WRITE ( 6,1000 1 
WRITE(8,lOOO) 

WRITE(6,7011) (CV(II), II=l,NICV) 
WRITE(8,7011) (CV(II), II=l,NICV) 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE ( 6,7011 ) PINDX 
WRITE ( 8,7011 ) PINDX 
WRITE ( 6,1000 ) 
WRITE(8,lOOO) 

510 CONI'INUE 

970 CCMI'INUE 

c 
IF (ICUT) 997, 512, 997 

512 IPHASE = 6 

IBUG = 512 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE(6,1097) IBUG, IPHASE, ICODE 
WRITE(8.1097) IBUG, IPHASE, ICODE 
WRITE(6.1000) 
WRITE(8,lOOO) 

GO TO 602 

C 

C 
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C 
C ***** -Y F'ROPAGATION ***** 
C 
C 
600 

C 

601 

602 
C 

C 

603 
604 
605 
606 
607 
608 

C 

IBUG = 600 
WRITE(6,lOOO) 
WRITE(8.1000) 
WRITE(6.1099) IBUG, IPHASE 
WRITE(8.1099) IBUG, IPHASE 
WRITE(6.1000) 
WRITE (8,1000) 

IF (ICUl') 141, 601, 141 
IPHASE = 2 

IBUG = 602 
WRI"E(6,lOOO) 
WRITE(8.1000) 
WftITE(6,1099) IBUG, IPHASE 
WRITE(8.1099) IBUG, IPHASE 
WRITE(6.1000) 
WRITE (8,1000) 
WRITE(6.1096) IBUG, "ID 
WRITE(8.1096) IBUG, mID 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE(6.1011) IPHASE. TABS, TREL, PIMlX 
WRITE(8.1011) IHIASE, TABS, TREL, PINDX 

I m  = ISPEP + 1 
IF ("ID) 604, 604, 603 
"UP = J13DD(ISEP-l.NNID) 
IF (IPHASE) 996, 996, 605 
GO TO (608,608,608,996,608,606,608,996~, IPHASE 
IF (CVTID) 608, 608, 607 
CMTP = JMOD(ISTEP-1,CVTID) 
T =T+TSPEP 
TABS = T A B S + m P  
TREL = T R E L + m  
GO M 200 
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SuBROuTINE JNtW (M, ME ,N, X, ACTIVE, F, G )  
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
c 
C 

C 

***** This subroutine computes the Perfomce Index PINDX and the 
constraints CCNI(II1) for Neural-Net Optimisation/Update during 
both the Learning and Controlled Trajectory Phases. 

***** The ' [LEYLAND.OpTIMNN]TYP~.INC" File is Included here. 
This file contains the statements which establish and define: 
1) the Principal CClMMCN Blocks: 2 )  the Data TYPE of the 
Principal Parameters, Arrays, and Vectors: and 3 )  the 
DIMiX3I(TJ of the Principal Arrays and Vectors of the 
0mIM" system. 

INCLUDE ' ~ ~ . 0 P r I M N N I T y p E c o b l . I N c '  

C 

C 

C 
C 
1000 
1001 
1071 
1072 
7011 
C 
C 

LOGICAL ACI'IVE(NCXX) 

-CWCl'R, ECW-TR, STATE. S"A!LBW 
-*E CWcrT, ECVCl'R, STATE, SX'A!LBW 

F'ORMAT(2HO 
FORMAT(2H1 1 
FORMAT(40HO ***** NOFMAL EXIT FROM JNtW ***** I / )  
FORMAT(39HO ***** ERROR EXIT FROM JNW *****//I 
FORMAT ( 4 D 2 0 . 7  ) 

C ***** Initialisation ***** 
C 

10 
11 

12 

13 

14 

C 

JERR = o  
IF (IPHASE) 996, 996, 10 
GO To (11,11,11,996,12,12,12,996), IPHASE 
ICVDEF = 2 
1- = 1 
NIJKCV = NIJ'KCVL, 
GO TO 13 
ICVDEF = 4 
1- = 2 
NIJKCV = NIJKCVC 
M) 14 IJK=l,NIJKCV 
cv(1JK) = X(1JK) 
CONTINUE 

C ***** Unload the Control Vector CV(I1) ***** 
C 

CALL cwcTR(xDuM.JERR) 
IF (JERR .NE. 0) GO M 996 

C 
C ***** Determine State from Neural-Net Model ***** 
C 

SARG = ZERO 
DO 30 L=l,IB?H 
CALL S'IATE"(XD(1.L) .YYN,JERR) 
IF (JERR .NE. 0) GO M 996 
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Do 15 J=l,NL2(2) 
YYA(J) = YD(J.L) 

15 CONTINUE 
C 
c ***** Load the End Conditions Vextor EC(JJ) ***** 
C 

21 

22 
30 

C 

CALL ECVCTR(L,WA,YYN,JERR) 
IF (JERR .NE. 0)  GO TO 996 
SUMSQW(L) = suMsQ 
GO TO (21,21,21,996,22,22,22,996), IPHASE 
SARG = SARG + wTSNNL(L)*suMsQW(L) 
GO To 30 
SARG = SARG + wTSNNC(L)*SUMSQW(L) 
CONTINUE 
SUMSQ = SARG 

C ***** Define the Performance Index PINDX ***** 
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3 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 

C 

C 
C 

SUBROVTINE JCTRL (M, ME, N, X, ACTIVE, F , G) 

***** This subroutine computes the Performance Index PINDX and the 
constraints m(II1) for Control Optimisation/Update during 
the Controlled Trajectory Phase. 

***** Start suBRoIlTINE JCTRL ***** 

***** The ~[LEXLAND.0FTIB"]TypEcoM.INc' File is Included here. 
This file contains the statements which establish and define: 
1) the Principal Blocks: 2) the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3 )  the 
DIKEXSICBI of the Principal Arrays and Vectors of the 
O P T I m N  System. 

INCWIDE '[LEYLAND.O~IMNNlTypEcoM.INc' 

1000 
1001 
1071 
1072 
7011 
C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

FORMAT(2HO 
FORMAT(2Hl 
FORMAT(41HO ***** NORMAL EXIT FROM JcTRt ***** / / I  
FORMAT(40HO ***** ERROR EXIT FRCM JCTRL *****/ / )  
FORMAT ( 4D2 0.7 ) 

***** Initialisation ***** 

10 

11 

JERR = o  
ICVDEF = 6 
IECDEF = 3 
Do 10 II=l,NICV 
CV(I1) = X(I1) 
CONTINUE 
Do 11 I=l,NL2(1) 
xN(1) = xD(I.1) 
cxxwINuE 

***** Unload the Control Vector CV(I1) ***** 

CALL cwcra(xN,JERR) 
IF (JERR .NE. 0) GO To 996 

***** Determine State from Neural-Net Model ***** 

CW STATENN(XN,YN.JERR) 
IF (JERR .NE. 0) GO TO 996 

***** Load the End Conditions Vextor EC(JJ) ***** 

cw ~ ( L D u M . y D u M , Y N . J E R R )  
IF (JERR .NE. 0) GO To 996 

***** Define the Performance Index PINI))( ***** 
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PINDX = SUMSQ 
I? = PINDX 
IF (NCONC) 997, 997, 100 

C 
C ***** Compute Constraint V e c t o r  Function CON(II1) ***** 
C 

C 
100 

101 

102 
C 

C 

I11 = 0 
"c = 0 
Do 102 I=l,NL2(1) 
IF (ICONC(1) 1 102. 102, 101 
I11 = I11 + 1 
IARG = ICONC(1) 
~ ~ ( 1 1 1 )  = m C ( 1 )  *SMAXC(I) - =(I) 'XA(1) - XA(1ARG) *XA(IARG) 
G(II1) = CON(II1) 
CONTINUE 
"c = I11 
Go To 997 

C ***** Error Exit 
C 
996 WRITE(6.1072) 

WRITE(8,1072) 
Go To 999 

C 
C ***** Normal Exit 

***** 

*et** 

c 
997 CONTRJclE 

C WRITE(6,1071) 
C WRITE(8.1071) 
C c ***** *****  
C 
999 RFIURN 

END 
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SUBRrnINE cvVcra(X.JERR)  
C 
C 
c ***** This subroutine either Loads the Control Vector FROM the 
C principal Parameters in the OPTIMNN System if ICVDEF = 1, 
C 3, or 5, or Unloads the Control Vector To the appropriate 
C principal Parameters in the OPTIM" System if ICVDEF = 2, 
C 4. or 6. 
C 
c 
c ***** start SuBROvTINE CWCPR ***** 
C 
C 
C 
C ***** The ~[[LEyLAND.OPTIM"JTYPECCM.INc' File is Included here. 
C This file contains the statements which establish and define: 
C 1) the Principal CGMMON Blocks; 2) the Data TYPE of the 
C Principal Parameters, Arrays, and Vectors; and 3) the 
C D-ICW of the Principal Arrays and Vectors of the 
C O P T I m N  system. 

C 

C 

C 
C 

I-*4 I, J, JERFt, K, NIJKCV 

REAL*8 X(NL2DIM) 

1000 FOfPPLT(2HO 
1001 m T ( 2 H 1  
1071 FOfPPLT(42HO ***** NORMAL EXIT FRCM CWCTR ***** / / )  
1072 FORHAT(41HO ***** ERROR EXIT FROM CWCTR ***** / I )  
701 1 FORMAT ( 4D20.7 
C 
c 
C ***** Initialisation ***** 
c 

JERR = o  
GO TO (100,100,100,100,200,200,996). ICVDEF 

C 
C ***** Load or unload the Control Vector CV(1JK) during Neural-Net 
C Optimisation/Update. 
C 
100 IJK = 0 

NIJKCV = 0 
DO 130 K = 1.M 
DO 120 I = l,NI(K) 
DO 110 J = l,NJ(K) 
GO TO (101,101,102,102,996,996). ICVDEF 

101 IF (IJ'KCVL(1,J.K)) 110,110,103 
102 IF (IJKCVC(1,J.K)) 110,110,103 
103 IJK = IJK + 1 

GO M (104,105,104.105,996.996.996,996~, ICVDEF 
C 
C ***** Load the Control Vector CV(IJK) ***** 
C 
104 CV(IJK) = CW(1,J.K) 

Go To 110 
C 
C ***** Unload the Control Vector CV(IJK) ***** 
C 
105 CW(1,J.K) = CV(1JK) 
110 CONTINUE 
120 CONTINUE 
130 CONTINUE 

NIJKCV = IJK 
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GO To (141,141,142,142,996,996,996). ICVDEF 
141 NIJKCVL = IJK 

Go To 997 
142 NIJKCVC = IJK 

GO To 997 
C 
C * * * * *  Load or Unload the Control Vector CV(I1) during Control 
C Optimisation/Update. 
C 
200 I1 = 0 

NICV = 0 
Do 210 I = 1,NLl2(1) 
IF (ICV(1)) 210, 210, 201 

GO M (996,996,996,996,202,203,996). ICVDEF 
201 I1 = I1 + 1 

c 
C ***** Load the Control Vector CV(I1) ***** 

202 Cv(I1) = X ( 1 )  
Go M 210 

C 
C * * * * *  Unload the Control Vector CV(I1) * * * * *  
C 

203 X ( 1 )  = CV(I1) 
210 CONTINUE 

NICV = I1 
Go To 997 

C 
C * * * * *  Error Exit .***** 
C 

996 WRITE(6,1072) 
WRITE(8,1072) 
Go To 999 

C 

C 

C WRITE(6,1071) 
C WRITE(8,1071) 
C 

C 

C * * e * *  N0-l &it ***** 

997 CONTINUE 

C ***** =IT * * * * *  

999 RETURN 
END 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Loads the End Conditions Vector FROM the 
appropriate Principal Parameters in the O F T I M "  -tan 
ans Sums the Squares of selected End Conditions to define 
the Core of the Perfonmnce Index if IECDEF = 1, 2. or 3. 

***** start SUBRrnINE ECVCPR ***** 

***** The [LG~LAND.OPTIMWI"PECXM.INC~ File is Included here. 
This file contains the statenents which establish and define: 
1) the Principal C€MKN B l o c k s ;  2) the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3 )  the 
DIM3EION of the Principal Arrays and Vectors of the 
OETIMW System. 

INFBSER'4 J, JERR, L. NJJB2 

REAL*S WP, WA(NL2DIM). YYN(NL2DIM) 

1000 
1001 
1071 
1072 
7011 
C 
C 

FORMAT(2HO ) 
FORMAT(2H1 ) 
RXWAT(4WO ***** "AL EXIT FRCN ECVCTR * * * * * I / )  
FORMAT(41HO ***** ERROR EXIT FRCM ECVCPR ***** / / )  
FORWiT(4D20.7) 

c ***** 
C 

JERR 
G O T 0  

C c * * * *e  

c 
C 
100 

101 

102 

103 
C 

JJJ 
N J J K  
SUMsQ 

Initialisation ***** 

= o  
(100,100,200,996), IECDEF 

Load the End Conditions Vector EC(JJJ) during Neural-Net 
Optimisation/Update. 

= o  
= o  
= ZERO 

Do 1iO J = l,NL2(2) 
GO To (101,102,200,996), IECDEF 
WP = W"L(J) 
IF (JJECLIJ)) 110,110,103 
WT = WINNC(J) 
IF (JJECC(J)) 110,110,103 
JJJ = JJJ + 1 

C ***** Load the End Conditions Vector EC(JJJ) ***** 
C 

ECfJJJ) = YYN(J) - YYA(J) 
SUMSQ = SUMSQ + WI'*EC(JJJ)*EC(JJJ) 

110 CCBVTINUE 
Go To (111,112,996,996). IECDEF 

111 NJJEXL = JJJ 
Go To 997 

112 NJJEC = JJJ 
Go To 997 

C 
C ***** Load the End Conditions Vector EC(JJ) during Control 
C Optimisation/Update. 
C 
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200 JJ = 0 
N J E c = o  
SUMsQ = ZERO 
Do 210 J = l,NL2(2) 
IF (JEC(J)) 210, 210. 201 

201 JJ = JJ + 1 
C 
C * * * * *  Load the End Conditions Vector EC(JJ) ***** 
C 

EC(JJ) = YYN(J) 
suMsQ = SUMSQ + WrC(J)*EC(JJ)*EC(JJ) 

huEc = JJ 
Go To 997 

210 CONTINUE 

C 

C 
C ***** Error mit * * * * *  

996 WRITE(6,1072) 
WRITE(8,1072) 
Go To 999 

C 

C 

C WRITE(6.1071) 
C WRITE(8.1071) 
C 

C * * * * e  No-1 &it * * e * *  

997 CONTINUE 

C * * * * e  =IT * * * * e  
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 

C 
C 

***** This subroutine Determines 
Control and the Neural-Net 
Model. 

***** Start SUEHOWl'INE STAl" 

the State as a Function of the 
Parameters using the Neural-Net 

***** 

***** The ~ I ~ . O F T I M " l T Y P E C a M . I N c "  File is Included here. 
Tfiis file contains the statements which establish and define: 
1) the Principal C" Blocks; 2 )  the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3 )  the 

1000 
1001 
1071 
1072 
7011 
C 
C 

DIMENSION of the Principal Arrays and 
O F T I M "  System. 

INCLUDE ' [LEXLAND.0~1"YF'~ypEcoM.INc' 

EXTERNAL P-0, PFNCMl. ~ m 0 2 .  PFNcT03 
-*E P-0, PFNcTol, PFNCT02, PF"03 

J!XXWiT(2HO 1 
m T ( 2 H 1  
FORMAT(43HO ***** WRWU EXIT FRCM STATE" 
FORMAT(42HO ***** ERROR EXIT FROM STATE" 
FORMAT (4D20.7 

Vectors of the 

***** / / )  
* **** / / )  

C ***** Initialisation ***** 
C 

C 
C ***** Evaluate for Each Layer. 
C 

C 
C ***** Determine the Origin Signals for Each Neural-Net Layer, 
C Origin Position, and Destination Position. 
C 
C ***** Evaluate for Each Origin Position. 
C 

C 
C ***** Evaluate for Each Destination Position. 
C 

C 

JERR = o  

Do 310 K = l , N K  

DO 120 I=l.NI(K) 

DO 110 J = l . N J ( K )  

IF ( K - 1 )  111,111,112 

Go 113 110 
111 XNN(1,J.K) = X ( I )  

112 XMJ(1,J.K) = Y N N 1 I . K - 1 )  
C 

C 

C 
C ***** Determine the Destination Signals for Each Neural-Net Layer, 
C Origin Position, and Destination Position. 
C 

110 CONTINUE 

120 CONTINUE 
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c **e** Evaluate for Each Destination Position. 
C 

C 

C 
C *****  Evaluate for Each Origin Position. 
C 

DO 210 J=l,NJ(K) 

UNN(J,K) = ZERO 

DO 220 I=l,NI(K) 
UNN(J,K) = UNN(J,K) + CW(I,J,K)*XNN(I,J,K) 

220 CONTINUE 
C 
C ***** Input the Destination Signal to the Selected Neural-Net 
C Pass-Through Function (i.e., Neural-Net Node Filter). 
C 

GO TO (231,232,233,234), "CT(J,K)+l 
c 
C *****  The No-Pass (i.e., the Constant Function) Neural-Net Node 
C Filter Function. 
C 
231 CALL PFNCrOO(J,K,JERR) 

IF (JERR) 996,210,996 
C 
C ***** The Direct-Pass (1.e.. the Linear Function) Neural-Net Node 
C Filter Function. 
c 
232 CALL PFNCTOl(J,K,JEZR) 

IF (JERR) 996,210,996 
C 
C * * * * *  The Hyperbolic Tangent (i.e., the Threshold Function) 
C Neural-Net Node Filter Function. 
C 
233 CALL PFNCl"02(J,K,JERR) 

IF (JERR) 996,210,996 
C 
C * * * * *  The First Derivative of the Hyperbolic Tangent (i.e., the 
C Pulse Function) Neural-Net Node Filter Function. 
C 
234 CALL PFNCr03(J,K,JERR) 

IF (JERR) 996,210,996 
C 

C 
210 CONTINUE 

310 CONTINUE 
c 
C +****  Determine the Neural-Net Model Output Vector 
C 

DO 410 J=l.NJ(NK) 
Y(J) = Y"(J,NK) 

410 CONTINUE 
C 

C 

C 

Go To 997 

C i r t * * t  Error Exit * * * * *  

996 WRITE(6.1072) 
WRITE (8,1072) 
Go To 999 

C 

C 

C WRITE(6.1071) 
C WRITE(8,1071) 
C 

C 

C +****  No-1 -it ****e 

997 CONTINUE 

C * * * * e  =IT *****  

999 RETmN 
END 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 
C 

***** This subroutine Defines the No-Pass (i.e., the Constant 
F'unction) Neural-Net Pass-Through Function (i.e., Node 
Filter) - 

***** Start SuBROvTINE PFNCTOO ***** 

***** The "[LEYLAND.OFTlM"lTYPECcM.INc" File is Included here. 
This file contains the statements which establish and define: 
1) the Principal K" Blocks: 2) the Data TYPE of the 
principal Parameters, Arrays, and Vectors; and 3 )  the 
DIMXSICN of the Principal Arrays and Vectors of the 
OPTIMm System. 

INCLUDE ' [LeyLAND.0FTIMNN1TYPEcaM.INc' 

INIM;ER*4 J, JERR, K 

1000 
1001 
1071 
1072 
7011 

C 
C 

FOWI&T(2HO ) 
FORMAT(2H1 ) 
WRMAT(43HO ***** NORMAL EXIT mOM PFNCTOO * * * * * / / I  
FORMAT(42HO ***** ERROR EXIT FFUlY PFNCTOO ***** / / )  
FORMAT(4D20.7) 

Initialisation ***** 

= o  

Evaluate the Destination Signal to the J-th Destination 
Position of the K-th Neural-Net Layer. 

YNN(J.K) = YNO(J.K) + CN(J.K) 

IF (JERR) 996,997,996 
C 

C 
c ***** Error Exit *e*** 

C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 

Appendix C: PFNCTOO.FOR - 1 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Defines the Direct-Pass (i.e., the Linear 
Function) Neural-Net Pass-Through bction (1.e.. Node Filter). 

***** Start suBRoI]TINE PFNCTOl ***** 

***** The [LeYLAND.OPrIM"lTYFECU4.INC~ File is Included here. 
This file contains the statements which establish and define: 
11 the ptincipal Blocks; 2) the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3 )  the 
DIMENSION of the Principal Arrays and Vectors of the 
O P r I M m  System. 

I"EGER*4 J. JERR. K 

-*E AA. ARG. BB, CC, DD, RrxID, W 

1000 FQRMAT(2HO 
1001 FORMAT(2H1 ) 
1071 FORMAT(43HO ***** NORMAL EXIT FROM PFNcMl * * * * * / / I  
1072 FORMAT(42HO * * * * *  ERROR EXIT FROM PFNcTOl * * * * * I / )  
7 011 FORMAT (4D2 0.7 
C 
C 
C ***** Initialisation ***** 
C 

JERR = o  
c 
C ***** Select Method of Defining Model Constants. ***** 
C 

DD = DN(J,K) 
IF (DDCTENp6--1 100,200,200 

C 
C ***** Input Model Constants Directly. ***** 
C 

100 AA = AN(J,K) 
CC = CN(J,K) 
Go To 202 

C 
C ***** Define Model Constants from Geometrical Considerations. ***** 
C 
200 ARG = CN(J,K) - AN(J,K) 

201 FA = (DN(J,K) - BN(J,K))/ARG 
IF (DABS(ARG)-TENM6) 996,201,201 

CC = M(J,K) - YNO(J,K) - AA*(CN(J.K) - XNO(J,K)) 
C 
C ***** hraluate the Destination Signal to the J-th Destination 
C Position of the K-th Neural-Net Layer. 
c 
202 YNN(J,K) = YNO(J,K) + AA*(U"(J,K) - XNO(J.K)) + CC 

C 

C 
c ** *e*  Error &it ***** 
C 

Go To 997 

996 WRITE(6,1072) 
WRITE (8,1072) 
Go To 999 

C 
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c 
999 RETURN 

END 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Defines the Hyperbolic Tangent (i.e., the 
Threshold Function) Neural-Net Pass-Through Function (i.e., 
Node Filter). 

***** start SuBRPIpTINE PFNcp02 ***** 

***** The '[LGyLAND.OpTIM"]'l"ECCM.INC" File is Included here. 
This file contains the statements which establish and define: 
1) the h-incipal CON Blocks; 2) the Data W E  of the 
Principal Parameters, Arrays, and Vectors; and 3) the 
DIMENSION of the principal Arrays and Vectors of the 
OPTlImN system. 

I"EETP4 J, 3ERR. K 

m * 8  AA. ARG. m 9 0  

1000 FORMAT(2HO 
1001 FORMAT(2H1 1 
1071 FORMAT(43HO *****  
1072 FORMAT(42HO ***** 
7 01 1 FQRMAT (4D20.7 
C 
C 
C ***** Initialisation 
C 

C 
JERR = o  

NORMAL EXIT FROM PFNCT02 * * * * * / / I  
ERROR EXIT FROM PF"02 * * * * * / / I  

***** 

C ***** Select Method of Defining Model Constants. ***** 
C 

C 
C ***** Input Model Constants Directly. ***** 
C 

IF (BN(J,K)-m) 100,200,200 

100 AA = AN(J,K) 
GO TO 204 

C 
C ***** Define Model Constants from Geametrical Considerations. I**** 

C 
200 IF (AN(J,K)-m) 996,201,201 
201 m990 = ONE - TRm2 

IF (PT990-AN(J.K)) 996,202,202 
202 IF (EH(J,K)-m) 996,203,203 
203 ARG = (ONE + AN(J,K))/(ONE - AN(J.K)) 

AA = (PTSOO/BN(J,K))*DLOG(ARG) 
C 
C ***** Function hmluation ***** 
C 
204 YNN(J,K) = YNO(J,K) + C N ( J , K ) * D T A " ( A A * ( U " ( J . K ) - X N O ( J , K ) )  1 

GO To 997 
C c ***** Error Exit ***** 
C 
996 WRITE(6.1072) 

WRITE (8,1072 1 
Go To 999 

C 
C ***et No-1 &it ****e 
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C 

C WRITE(6.1071) 
C WRITE (8,1071) 
C 

C 

997 CONTINUE 

C t f * * *  =IT * * * * *  

999 RETURN 
END 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 
1000 
1001 
1071 
1072 
7011 
C 
C 

***** This subroutine Defines the First Derivative of the Hyperbolic 
Tangent (i-e.. the Pulse Function) Neural-Net Pass-Through 
Function (i.e., Node Filter). 

***** Start suBRovTINF. m 3  **I** 

***** The .[LEYLAND.OPTIMNNlTYPECX34.INC” File is Included here. 
This file contains the statements which establish and define: 
1) the Principal Ct2MX.l Blocks; 2) the Data TYPE of the 
principal Parameters, Arrays, and Vectors; and 3) the 
DIMINSIm of the Principal Arrays and Vectors of the 
OPTIMNN System. 

INCLUDE ’ [ L E y L A N D . 0 P T I M ” 1 T Y P ~ . I N c ’  

lWTDZEFP4 J, JERR, K 

REAL*B AA. ARG, m 9 0  

FORMAT(2HO 
FORMAT(2H1 ) 
FORMAT(43HO ****I NOFMAL, EXIT FROM PEW303 ***** / I )  
FORMAT(42HO ***** ERROR EXIT FRCM PFNcT03 ***** / / )  
FOIMAT (4D20.7 

C ***** Initialisation ***** 
C 

C 
C ***** Select Method of Defining Model Constants. ***** 
C 

C 
C ***** Input Model Constants Directly. ***** 
C 

JERR = O  

IF (EN(J,K) 100.100.200 

100 AA = AN(J,K) 
GO TO 204 

C 
C ***** Define &fodel Constants fran Geanetrical Consideratians. ***** 
C 
200 IF ( A N ( J , K)-W) 996,201,201 
201 PT990 = ONE - TmM2 

IF (PT99O-AN(J.K)) 996,202,202 
202 IF ( B N ( J , K ) - W) 996,203,203 
203 ARG = ?WO/DSQRT(AN(J,K)) - CNE 

AA = (PT500/BN(J.K) )*DIM:(ARG) 
c 
C ***** mction Evaluation ***** 
C 
204 ARG = ONE/DCOSH(AA*(U”(J,KI-XNO(J,K)I) 

Y”(J,K) = YNO(J,K) + AA*CN(J,K)*ARG*ARG 
Go TO 997 

C 
c * i t * * *  &Tor -it ***** 

996 WRITE(6.1072) 
WRITE (8,1072 1 
Go TO 999 

C 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Determines the 'Actual' (i.e., Reference) 
plane -1 (i.e., Definition of the Control and State as 
a Function of Time). 

***** Start SuBROzrrINE STATE ***** 

***** The '[L?XLAND.OpTlM"lTypECaM.INc' File is Included here. 
"his file contains the statements which establish and define: 
1) the Principal c(MMJN Blocks; 2) the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3) the 
DIMENSIOBJ of the Principal Arrays and Vectors of the 
0mIMNN System. 

INCLUDE ' [LEyLAND.OpTIMNNITYP~.INC'  

1000 FORHAT(2HO 1 
1001 FORMAT(ZH1 1 
1071 FORMAT(41HO ***** NORMAL EXIT F'RCM STAm ***** / / )  
1072 FORMAT(40HO ***** ERROR EXIT FRCM STATE * * * * * / / I  
7011 FORMAT(4D20.7) 
C 
C 
C ***** Initialisation ***** 

JERR = o  
C 
C ***** Select Source for Control/State Definition. 
C 

IF (IPHASE) 996,996,100 
100 GO TO (101,101,101,996,102,102,102,996). IF'HASE 
101 GO TO (111,112,113,114). SIMODL 
102 GO TO (111,112,113,114). SIMODC 

c 
C ***** Synthesis the 'Actual" (i-e., Reference) Plant Model by 
C 
C 

Combining Selected Individual Analytic Models. 

111 CALL ASTATE(X,Y,JERR) 
IF (JERR) 996,997,996 

C 
C ***** Defines the "Actual' (i.e., Reference) Plant Model from 
C On-Line Test Data. 
C 

112 CALL DSTATE(X.Y,JERR) 
IF (JERR) 996,997,996 

C 
C ***** Defines the "Actual' (1.e.. Reference) Plant Model from 
C Stored Data Tables 
C 

113 CALL TSTATE(X.Y,JERR) 
IF (JERR) 996,997,996 

C 
C ***** Defines the "Actual" (i.e., Reference) Plant Model from 
C a User Supplied Model. 
C 
114 CAU USTATEIX,Y,JERR) 

IF (JERR) 996,997,996 

Appendix C: STATE.FOR - 1 



C 
Go To 997 

c 
C ***** Error bit 

996 WRITE(6,1072) 
WRITE(8.1072) 
Go To 999 

C 
C *****  Normal Exit 
C 

C WRITE(6,1071) 
C WRITE(8,1071) 

997 CONTINUE 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 

C 
C 

***** This subroutine Synthesises (i.e., Defines) the 'ACTUAL' 
(i-e., the Reference) Plant Model including both Input and 
Output Signals by Combining Selected Individual -lytic 
Models (i.e., ASTATEOl, ASTATEOZ, ASTAm03, *, *, *, * )  

***** Start SuBROvTINE ASTAm ***** 

***** The ~(LeyLANO.0~~1TYPECCX4.INC' File is Included here. 
This file contains the statements which establish and define: 
1) the h-incipal Blocks: 2) the Data TYPE of the 
Principal Parameters, Arrays, and Vectors: and 3 )  the 
D-ICN of the Principal Arrays and Vectors of the 
0mM" System. 

INCLUDE ' [ L E Y L A N D . O P T I M N N I T Y P ~ . I N C '  

I ~ E W 4  IARG, JERR, L1. L2, L3 

ASTATEOl, ASTATE02, ASl'ATE03, ASTATEO4, ASTATEOS, 

XE?iL* 8 ASTATEOl, ASTATE02, ASl'Al7203, ASTATEOI , ASl'A"E05, 
1 AsTATE06, ASTATE07, ASTATRAN 

1 ASTATE06, AspATE07, ASTATRAN 

1000 MRMAT(2HO ) 
1001 FORMAT(2Hl 1 
1071 FORMAT(42HO ***** NORMAL. EXIT FROM ASTATE ***** / / )  
1072 MRMAT(41HO ***** ERROR EXIT FROM ASTATE * * * * * / / I  
701 1 FOFU4AT ( 4D2 0.7 
C 
C 
C ***** Initialisation ***** 
C 

C 
C ***** Evaluate for Both the Plant Input and Plant Cutput Vectors ***** 
C 

C 
C ***** Evaluate for Each Vector Elenent ***** 
C 

J E R R = o  

DO 310 L1=1.2 

IF (L1-2) 373, 371, 996 
371 IF ("ID) 372, 372, 373 
372 CALL STAm(X,Y,JERR) 

IF (JERR .NE. 0) GO TO 996 
GO To 310 

ARG = ZERO 
IF (NL3(L2,Ll)) 200,200,180 

373 Do 210 L2=1,NL2(Ll) 

C 
C ***** hraluate Each Individual Primary Analytic Model ***** 
C 

180 DO 190 L3=1,NL3(U,Ll) 

C ***** Select the Primary Analytic Model ***** 
C 

IARG = IFU"(L3,U,Ll) + 1 
GO To (100,101,102,103,104,105,106,107,996), IARG 

C 
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C ***** The Random Uniform Distribution Function ***** 
C 
100 CALL ASTATRAN (L3, L2, L1,1, Y Y ,  JERR) 

IF (JERR) 996,150,996 
C 
c ***** The Linear Function (i.e., the Ramp Function) ***** 
C 
101 CALL ASTATEOl(L3.L2,Ll,YY,JERR) 

IF (JERR) 996,150,996 
C 
C ***** The Serpentine Curve Function ***** 
c 
102 CALL ASTATE02(L3,L2,Ll,YY,JERR) 

IF (JERR) 996,150,996 
C 
C *****  The Witch of Agnesi Function ***** 
C 
103 CALL ASTATE03(L3,L2,Ll,YY,JERR) 

IF (JERR) 996,150,996 
C 
C ***** The Inverted Witch of Agnesi Function ***** 
c 
104 CALL ASTATEOI(L3,L2,Ll,W,JERR) 

IF (JERR) 996,150,996 
C 
c * * * * *  The meloped Sinusoidal Function ***** 
C 
105 CALL ASTATE05(L3,L2,Ll,W,JERR) 

IF (JERR) 996,150,996 
C 
C * * * * *  The Hyperbolic Tangent Function (1.e.. the Threshold Function) 
C 
106 CALL ASTATEO6(L3,L2,Ll,YY,JERR) 

IF (JERR) 996,150,996 
C 
C ***** The First Derivative of the Hyperbolic Tangent Function (l.e., 
C the Pulse Function) 
C 
107 CALL ASTATE07 (L3, L2, L1, YY, JERR) 

IF (JERR) 996,150,996 
c 
c * * * * *  Randomise the Primary Analytic Function Just Evaluated * * * * *  
C 
150 IF(DABS(M(L3.L2,Ll))-TENMB) 151,151,154 
151 IF(DABS(B2(L3,L2,Ll))-TME) 152,152,154 
152 IF(DABS(C2(L3,L2,Ll))-TENMB) 153,153,154 
153 IF(DABS(D2(L3,L2,Ll))-TENME) 155,155,154 
154 CALL ASTATRAN (L3, L2, L1,2, YY, JERR) 

IF (JERR) 996,155,996 
c 
C * * * * *  Sum the Primary Analytic Functions Evaluated To-Date * * * * *  
C 

C 
155 ARG = ARG + YY 

190 COUTINUE 
C 
C * * * * *  Randomise the Combined Primary Analytic Models to Yield the 
C 
C 
200 
201 
202 
203 
204 

205 
206 

207 

Final Result 

IF(DABS(A3(L2,Ll))-TME) 201,201,204 
IF(DABS(B3(L2,Ll))-TENME) 202,202,204 
IF(DABS(C3(L2,Ll))-TENMB) 203,203,204 
IF(DABS(D3(L2,Ll))-TENME) 205,205,204 
CALL ASTATRAN (L3, L2, L1,3, ARG, JERR) 
IF (JERR) 996,205,996 
GO TO (206.2071, L1 
X(L2) = ARG 
GO To 210 
Y(L2) = ARG 
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C 

C 

C 

C 

C 

210 ax?ImuE 

310 CONTINUE 

Go 'ID 997 

C ttttt Error -it ttttn 

996 ~~ITE(6.1072) 
WRITE(8,1072) 
Go 'ID 999 

C 

C 

C WRITE(6.1071) 
C WRITE(8.1071) 
C 

C 

C ttttt N0-l =t *t*tt 

997 COWIINUE 

C ttttt W T  ttttt 

999 RFlvRN 
EM) 
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~UBROVPINE ASTATRAN (L3, U , L1, Lcw . w, JEFW 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Defines the Uniform Distribution Rrnction 
which is one of the Individual Analytic Models available 
to be used in the Synthesis (i.e., the Definition) of the 
*ACTUAL* (i.e., the Reference) Plant -1 including both 
Input and Output Signals. 

***** Start SUBRWPINE ASTAT" ***** 

***** The ' I L E n a M , . O P T ~ l T y P ~ . I N c '  File is Included here. 
This file contains the statements which establish and define: 
1) the Principal CCBQ43l Blocks; 2) the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3) the 
DIMENSIOIV of the h-incipal Arrays and Vectors of the 
OPTIMNN System. 

INCLUDE ' [LEYLAND.O~IM"lTYPEYXW.INC' 

1000 FORMAT(2HO 
1001 m T ( 2 H 1  ) 
1071 'fOXWiT(44HO ***** NORMAL EXIT FROM ASTATRAN * * * * * / / )  
1072 FORMAT(43HO ***** ERROR EXIT FROM ASTATRAN ***** / / )  
7011 FoIplAT14D20.7) 
C 
C 
C ***** Initialisation ***** 
C 

m = o  
GO To (10,20,30,996), LCALL 

C 
c ***** The Random Uniform Distribution Function ***** 
C 

10 IS= = ISEEDl(L3,L2,Ll) 
C JSEED = JSEEDl (L3, L2 

AA = Al(L3.U.Ll) 
BB = Bl(L3,U.Ll) 

C CC = Cl(L3.U.Ll) 
C DD = Dl(L3,U,Ll) 

YR = YRl(L3,L2,Ll 
GO 'IW 103 

20 ISEED = ISEED2(L3,U 
JSEED = JSEED2 (L3.U 
AA = M(L3,U.Ll) 
BB = B2(L3,L2,Ll) 
cc = C2(L3.U.L11 
DD = D2lL3.U.Ll) 

L1) 

L1) 
Ll 1 

YR = YR2(L3,L2,Ll) 
GO M 100 

30 ISEED = ISEED3(L2,Ll) 
JSEED = JSFED3 (L2, L1) 
AA = A3(L2,L1) 
BB = B3(U.L1) 
CC = C3(U,Ll) 
DD = D3(U,L1) 
YR = W(L2,Ll) 

C 
c ***** Determine ARG2 ***** 
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C 
100 IF (TENM6-DABS(W)) 103,101,101 
101 IF (TENM6-DABS (DD) ) 104,102,102 
102 IF (JSEED) 104,104,105 
103 ARGl = ZERO 

Go To 200 
104 ARG2 = CC 

Go To 200 
105 ARG2 = CC + DD*(?WO*RAN(JSEED) - ONE)*W 

C 
C ***** Determine ARGl *****  
C 
200 IF (TENMC-DABS(BB)) 202,201,201 
201 IF (ISEED) 202,202,203 
202 ARGl = AA 

GO TO 300 
203 ARGl .= AA + BB*(?WO*RAN(ISEED) - ONE) 

C c ***** Deternine yy ***** 
C 
300 W = YR + ARGl + ARG2 

c 
Go To 997 

C 
C ***** Error b i t  
C 
996 WRITE (6,1072 1 

WRITE (8,1072 ) 
GO To 999 

C 
C ***** Normal Exit 
C 

C WRITE(6.1071) 
C ~~ITE(8,1071) 
C 

997 CONTINUE 

C ***** =IT ***** 

*****  

*****  

c 
999 F3nJRN 

rn 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Defines the Linear i.e., the Ramp !?unction) 
Function which is One of the Individual -lytic Models 
available to be used in the Synthesis (i.e., the Definition) 
of the 'ACNAC' (1.e.. the Reference) Plant Model including 
both Input and Cutput Signals. 

***** Start SuBROuTINE ASTATEOl ***** 

***** The ~[LEYLAND.OPTIMNNlTYPECOM.INC" File is Included here. 
This file contains the statanents which establish and define: 
1) the Principal CCMWN B l o c k s ;  2) the Data TYPE of tl?& 
Principal Parameters, Arrays, and Vectors; and 3) the 
DIMENSION of the h-incipal Arrays and Vectors of the 
oPTR4uN System. 

INCLUDE ' [LEYLAND.OPTIMNNITYPECan.INc' 

INTEGER24 JERR, L1, L2, L3 

1000 
1001 
1071 
1072 
7011 
C 
C 

REAL*S AA. ARG. BB. 

FORMAT(2HO 
m T ( 2 H 1  ) 
FOFUYAT(44HO ***** 
FORMAT(43HO ***** 
FoRMAT(4D20.7) 

C ***** Initialisation 
C 

J E R R = o  

CC, DD, TMOD, YY 

NOFQ4AL W T  FROM AsTATEOl *****/ / )  
ERROR EXIT FROM ASTATEOl *****// !  

***** 

ARG = T - XO(L3,LZ.Ll) - HIAsE(L3,LZ.Ll) 
IF(PERIOD(L3,LZ,Ll)-TENM6) 996.996.11 

11 IF(PERIOD(L3,L2,Ll)-TENP6) 13.12.12 
12 RIOD = ARG 

Go To 14 
13 "MOD = cMOD(ARG,PEFtIOD(L3.L2,Ll)) 

c 
C ***** Select Method of Defining Model Constants. ***** 
L 

14 DD = D(L3,U.Ll) 
IF ( B T E X P 6 - m )  100,200,200 

C 
C ***** Input Model Constants Directly. * * * * *  
C 
100 AA = A(L3,U.Ll) 

cc = C(L3.LZ.Ll) 
Go To 202 

L 
c ***** Define Model Constants from the Co-ordinates of "bo Points. * * * * *  
C 
200 ARG = C(L3,U.Ll) - A(L3.U.Ll) 

IF (DABs(ARG)-TENMBI 996,201,201 
201 AA = (D(L3,LZ.Ll) - B(L3,LZ,Ll))/ARG 

CC = D(L3,LZ.Ll) - YO(L3,LZ,L1) - AA*(C(L3,L2,L1) - XO(L3,LZ,L1)) 
C 
C ***** Mction hraluation ***** 
C 
202 YY = YO(L3,LZ.Ll) + A?i*('IMOD - XO(L3,L2,Ll)) + CC 

Go To 997 
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C 
C ***** Error bit 
C 
996 WRITE(6,1072) 

WRITE(8.1072) 
Go To 999 

C 
C * * * * *  Normal Exi t  

***** 

*****  
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SUBROUTINE ASTATEO2(L3,L2,L1,YY,JERR) 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Defines the Serpentine Curve Function which 
is One of the Individual Analytic Models available to be used 
in the Synthesis (i.e., the Definition) of the 'ACTUAL' (i.e., 
the Reference) Plant Model including both Input and Output 
Signals. 

***** Start SuBROzrrINE ASTATE02 ***** 

***** The '[LEyLRND.OpTIMNNITypEccM.INc' File is Included here. 
This file contains the statements which establish and define: 
1) the Principal CtXPK34 Blocks; 2 )  the D a t a  TYPE of the 
Principal Parameters, Arrays. and Vectors; and 3) the 
DIME3SION of the Principal Arrays and Vectors of the 
OPTIMNN Systan. 

I=ER*4 JERR, L1. U ,  L3 

REAL*8 AA. ARG, BB. TMOD, W 

1000 
1001 
1071 
1072 
7011 

C 
C 

FORMAT(2HO 1 
FORMAT(2Hl ) 
FORElAT(44HO ***** NoRMAt EXIT FROM ASTATE02 ***** / / )  
m T ( 4 3 H O  ***** ERROR EXIT FROM ASTATE02 ***** / / )  
FORMAT (4D20.7 ) 

C ***** Initialisation ***** 

J E R R = o  
ARG = T - XO(L3,L2,L1) - E(L3,L2,Ll) 
IF (PERIOD (L3, L2, L1) -TENM6 T 96,996,11 

11 IF(PERIOD(L3,L2,Ll)-TE"6) 13.12,12 
12 ?MOD = ARG 

GO TO 14 
13 TMOD = DMoD(ARG,PERIOD(L3,L2,L1)) 

14 IF (DABS(A(L3.U.L1))-=6) 996,996,15 
15 IF (DABS(B(L~,IA~.L~))-TFNM~) 996,996,100 

C 

C 
C ***** Input Model Constants Directly. ***** 
C 
100 AA = A(W,U,Ll) 

BB = B(L3,U.Ll) 
C 
C ***** Function Evaluation ***** 
C 

W = YO(L3,L2,Ll) + AA*BB*TmlD/(AA*AA + TMOD'IMOD) 
co To 997 

C 

C 

C ***** Error mit ***** 

996 WRITE (6,1072 1 
WRITE(8,1072f 
GO TO 999 

C 
c ***** Exit ***** 
C 
997 m I N u E  
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c 
999 RETURN 

END 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Defines the Witch of Agnesi Function which 
is One of the Individual Analytic Models available to be used 
in the Synthesis (i.e., the Definition) of the 'ACTUAL" (i-e., 
the Reference) Plant Model including both Input and Output 
Signals. 

***** Start SUBFtCUTINE AsTATE03 ***** 

***** The '[LEyLAND.OSTIMNN]l"WECCM.INC' File is Included here. 
This file contains the statements which establish and define: 
1) the Principal CCMWBJ Blocks; 2 )  the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3) the 
DIMENSION of the Principal Arrays and Vectors of the 
O P T m "  System. 

INCLUDE '~LFyLAND.oPTIMNNlTypEcoM.INc' 

IlWEGEX*4 JERR, L1, L2, L3 

REAL*8 AA. ARG, BB, CC, PT990, TMDD, W 

1000 
1001 
1071 
1072 
7011 
C 
C 

FORMAT(2HO 
FORMAT(2Hl ) 
FORMAT(44HO ***** NORMAL EXIT FRCXY ASTA'TE03 * * * * * / / I  
FORMAT(43HO ***** ERROR EXIT FRCM ASl'ATE03 ***** / I )  
FoRMAT(4D20.7) 

C ***** Initialisation ***** 
C 

J E R R = o  
ARG = T - XO(L3,L2,L1) - PHASE(L3,U.Ll) 
IF(PERIOD(L3,L2,L1)-~6) 996,996,ll 

11 IF(PERIOD(L3,U,Ll)-TENP6) 13.12.12 
12 TMOD = ARG 

GO To 14 
13 TMOD = EMOD(ARG,PERIOD(L3,L2,L1)) 

C 
C ***** Select Method of Defining Model Constants. ***** 
c 

14 AA = A(W,LZ,Ll) 
cc = C(L3.U.Ll) 
IF ( C C - m )  100,100,200 

C 
C ***** Input Model Constants Directly. ***** 
C 
100 BB = B(L3,LZ.Ll) 

GO To 202 
C 
C ***** Define Model Constants from Geometrical Considerations. ***** 
C 
200 PT990 = c%JE - TmM2 

201 BB = DSQRT( ( W E  - CC)/CC) 
IF (PT99O-CC) 996,201,201 

c 
C ***** Function Evaluation ***** 
C 
202 W = YO(L3,U.Ll) + AA*AA*AA/(BB*BB*RIOD*'IMOD + AA'AA) 

Go To 997 
C 

I 
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997 CONTINUE 
C WRITE(6,1071) 
C WRITE(8,1071) 
C 

C 

C *et** =IT * * * e *  

999 RETURN 
END 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Defines the Inverted Witch of Agnesi Function 
which is One of the Individual Analytic Models available to be 
used in the Synthesis (1.e.. the Definition) of the 'ACTUAL" 
(i.e.. the Reference) Plant Model including both Input and 
Output Signals. 

***** Start SuBROvTINE mATEO4 ***** 

***** The wILEyLAND.OvPIM"lTYPEcoM.INc' File is Included here. 
"his  file contains the statements which establish and define: 
1) the Principal Blocks: 2) the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3) the 
DIMENSICXU of the Principal Arrays and Vectors of the 
0mIMNN System. 

II?lEG~*4 JERR, L1, L2, L3 

REAL*B AA, ARG, BB, CC, PT990, TMOD, W 

1000 
1001 
1071 
1072 
7011 
C 
C 

FORMAT(2HO 
m T ( 2 H 1  
m T ( 4 4 H O  ***** NORWiL EXIT FROM ASTATE04 * * * * * / / I  
FQRMAT(43HO ***** ERROR EXIT FRCM ASTATE04 ***** / / )  
FORMAT (4D20.7 

C ***** Initialisation ***** 
C 

J E R R = o  
ARG = T - XO(L3,L2,L1) - pHAsE(U.L2,Ll) 
IF(PERIOD(L3,U,Ll)-TE3R46) 996.996.11 

11 IF(PERIOD(L3,L2,Ll)-IWp6) 13,12,12 
12 TMOD = ARG 

GO To 14 
13 TMOD = nMOD(ARG,PERIOD(L3,L2,Ll)) 

C 
C ***** Select Method of Defining Model Constants. ***** 
C 

14 AA = A(L3,L2,Ll) 
CC = C(L3,L2,Ll) 
IF (CC-TENM2) 100,100,200 

C 
C ***** Input Model Constants Directly. ***** 
C 
100 BB = B(L3,U,Ll) 

GO To 202 
C 
C ***** Define Model Constants fran Geanetrical Considerations. ***** 
c 
200 m990 = ONE - TENM2 

201 BB = DSQRT(CC/(ONE - CC)) 
IF (pT990-CC) 996,201,201 

C 
C ***** Function Evaluation ***** 
C 
202 W = YO(L3,U.Ll) + AA*(oNE - AA*AA/(BB*BB*'IMOD*"DD + AA'AA)) 

GO To 997 
C 
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c 
997 CONTINUE 

C WRITE(6.1071) 
C WRITE(8.1071) 
C 

C 
c et*** =IT e* * * *  

999 I3E" 
END 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Defines the Enveloped Sinusoidal Function which 
is One of the Individual Analytic Models available to be used 
in the Synthesis ( i . e . ,  the Definition) of the 'ACTUAL' ( i . e . ,  
the Reference) Plant Model including both Input and Output 
Signals. 

***** Start SuBROuTINE ASTATEOS ***** 

***** The '[LEYLAND.O€TIM"]TYPEXXM.INC' File is Included here. 
This file contains the statements which establish and define: 
1) the Principal CC" Blocks; 2) the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3) the 
D-I(3N of the Principal Arrays and V e c r o r s  of the 
OPTIMNN System. 

INCLUDE ' [LEyLAND.0~IMNN1TYpEcoM.INC' 

II?"EER*4 JERR. L1, U, L3 

m f 8  AA. ALP, ARG, ARGl, ARG2, BB. CC, NW, =OS, TMP, ?MOD. W 

1000 MRMAT(2HO 1 
1001 FORMAT(2H1 1 
1071 FORMAT(44HO ***** NORMAL EXIT FRCM ASPATE05 *****/ / )  
1072 FORMAT(43HO ***** ERROR EXIT FROM ASPATE05 ***** I / )  
7011 MRMAT(4D20.7) 

C 
C 
C * * * * *  Initialisation ***** 

J E R R = o  
ARG = T - XO(L3,U.Ll) - PHASE(L3,L2,Ll) 
IF(PERIOD(L3 ,L2, L1) -TENM6) 996,996,ll 

11 IF(PERIOD(L3.L2,Ll)-"P6) 13,12,12 
12 TMOD = ARG 

13 TMOD = DMOD(ARG,PERIOD(L3,L2,Ll)) 
GO TO 100 

C 
C ***** Evaluation of the Exponential Part (i.e., ARGl) of the 
C Enveloped Sinusoidal Function. 

100 TEXP = TMOD - PSI(L3,L2,L1) 
AA = A(L3,L2.L1) 
BB = B(L3,U.LI) 
cc = C(L3,L2.L1) 
IF (DABS(AA)-m6) 101,101,110 

C 
C ***** Input Model Constants (i.e., ALpHA(L3,L2.L1)) Directly. ***** 
C 
101 = ALPHA(L3,L2,Ll) 

GO TO 113 
c 
C ***** Define Model Constants from Geometrical Considerations. ***** 
C 

110 IF(DABS(BB)-TRW6) 996,996,111 
111 IF(DABS(CC)-TEM36) 996,996,112 
112 ARG = DABS(BB/CC) 

ALP = (DLOG(ARG) ) /AA 

114 ARGl = CC*DEXP(ALP*"EXP) 
113 IF(DABS(ALP)-TE@M6) 115,115,114 
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Go To 200 
115 ARGl = CC 

c 
c ***** Evaluation of the Sinusoidal Part (i.e., ARG2) of the 
C Enveloped Sinusoidal Function. 
C 
200 =OS = TMOD - PHI(L3,L2,Ll) 

IF (NN(L3, L2, L1) -TENp8) 201,203,203 
C 
C ***** Input the Harmonic Number [NN(L3,L2,Ll)] and %-Pi times the 
C Primary Frequency [OMEGA(L3.L2,Ll) I Directly. 
c 
201 NW = NN(L3,L2,Ll)*OMEGA(L3,L2,L1) 

IF (NW-TENM8) 205,205,202 
202 IF (NW-TENP8) 207,205,205 

C 
C **e** Input Sinusoidal Period [cMEGA(L3,L2,Ll)] Directly. * * * * *  
C 
203 IF (OMEGA(L3,L2,Ll)-TENPB) 204,205.205 
204 IF (OMM;A(L3,L2,Ll)-TENMB) 996.996.206 
205 ARG2 = ONE 

206 NW = ?woPI/cMEGA(L3,L2,L1) 
GO TO 300 

C 
C ***** hraluation of the Sinusoidal Part (1.e.. ARG2) of the 
C Enveloped Sinusoidal Function. 
C 

C 
C * * * * *  Function Evaluation *****  

207 ARG2 = DcOS(NW*TCOS) 

c 
300 YY = YO(L3,L2,Ll) + ARGl*ARG2 

GO TO 997 
C 

C 

c ****e Error &it ***** 

996 WRITE(6.1072) 
WRITE (8,1072 1 
Go To 999 

c 
C * * * e *  No-1 &it * * * * *  
C 

C WRITE(6,1071) 
C WRITE(8,1071) 
C 

C 

997 CONTINUE 

C e**** EXIT ***** 

999 RETURN 
END 

C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 

Appendix C: ASTATE05.FOR - 2 

~~~~ 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Defines the Hyperbolic Tangent (i.e., the 
Threshold Function) Function which is One of the Individual 
Analytic Models available to be used in the Synthesis (i.e., 
the Definition) of the 'ACNAL' (i.e., the Reference) Plant 
Model including both Input and Cutput Signals. 

***** Start SUBROUl?INE ASTAl?306 ***** 

***** The ~[LEYLAND.OPTIMNNITYPEC€IM.INC' File is Included here. 
This file contains the statements which establish and define: 
1) the F'rincipal COMEXU B l o c k s :  2) the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3) the 
DIMENSION of the Principal Arrays and Vectors of the 
O P T I m N  System. 

INCLUDE ' ILEYLAND.0PTIMNN1TypEcoM.INC' 

INTEGER'4 JESR, L1, L2, L3 

REAL'8 AA. ARG, PT990, TMOD, YY 

1000 FORMAT(2HO 
1001 FORMAT(2H1 
1071 FORMAT(44HO ***** NORM?U, EXIT FRCM ASTATE06 ***** / / )  
1072 FQRMAT(43HO ***** ERROR EXIT FRm AsTATE06 * * * * * / / I  
7011 FORMAT(4D20.7) 
C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

*** Ini tialisation ** *** 

J E R R = o  
ARG = T - XO(L3.L2,L1) - PHASE(L3.L2,Ll) 
IF (PERIOD(L3, U, L1) --6) 996,996,ll 

11 IF(PERIOD(W,L2,L1)-TENF%) 13.12.12 
12 TMOD = AUG 

GO TO 14 
13 TMOD = DMoD(ARG.PERIOD(L3,L2.L3~) 

***** Select Method of Defining Model Constants. ***** 

14 IF (B(L3,L2,Ll)-=) 100,200,200 

***** Input Model Constants Directly. ***** 

100 AA = A(L3,U.Ll) 
GO TO 204 

***** Define Model Constants fran Geometrical Considerations. ***** 

200 IF (A(L3,L2,Ll)-=) 996,201,201 
201 PT990 = ONE - TJ3m2 

I F  (PT990-A(L3.L2,Ll)) 996,202,202 
202 IF (B(L3,L2,Ll)-"M2) 996,203,203 
203 ARG = (ONE + A(L3.L2,Ll))/(ONE - A(L3,L2,Ll)) 

AA = (PTSOO/B(L3,L2,Ll) )*DLOG(ARG) 

***** Function Evaluation ***** 

204 YY = YO(L3,U.Ll) + C(L3.L2,Ll)*"H(AA*?MoD) 
co To 997 
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999 m 
END 
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SUBROUI'INE ASTATE07 (L3 , L2, L1, YY, JERR) 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 
1000 
1001 
1071 
1072 
7011 
C 
C 

*****  This subroutine Defines the First Derivative of the Hyperbolic 
Tangent (i.e., the Pulse Function) Function which is One of 
the Individual Analytic Models available to be used in the 
synthesis (i.e., the Definition) of the 'ACl'WAL' (i.e., the 
Reference) Plant Model including both Input and Output Signals. 

***** Start SJBROUTINE AS"ATE07 ***** 

***** The ~[ILEyLAND.OPTIM"]TypEcoM.INC' File is Included here. 
This file contains the statements which establish and define: 
1) the Principal CCMCN Blocks; 2) the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3) the 
DIMENSICN of the h-incipal Arrays and Vectors of the 
0PTm system. 

INCLUDE ' [LEYLAND.OPTIMNNlTYP~.INC'  

I"BSER'4 JERR, L1, L2, L3 

m * a  AA, m ~ ,  ~ ~ 9 9 0 ,  TMOD, w 

FORMAT(2HO 1 
FORMAT(2H1 ) 
FORMAT(44HO ***** NORMAL EXIT FRCM =ATE07 ***** / / )  
FQRMAT(43HO ***** ERROR EXIT FROM ASPATE07 * * * * * / / I  
FORMAT (4D20.7) 

C ***** Initialisation ***** 
C 

J E R R = o  
ARG 
IF(PERIOD(L3.L2,Ll)-TRW6) 996,996.11 

= T - XO(L3,U.Ll) - PHASE(L3.L2,Ll) 

11 IF(PERIOD(L3.L2,Ll)-TENP6) 13.12.12 
12 TMOD = ARG 

GO TO 14 
13 RIOD = ~D(ARG,PERIOD(L3,L2,L1)) 

C 
C ***** Select Method of Defining Model Constants. ***** 
C 

14 IF (B(L3,L2,L1)) 100,100,200 

203 ARG = 
? A =  

C c ***** 
C 
204 ARG = 

w =  

c 
C ***** Input Model Constants Directly. ***** 
C 
100 AA = A(L3,U.Ll) 

GO TO 204 
C 
C ***** Define Model Constants from Geometrical Considerations. ***** 
C 
200 IF (A(L3,U,Ll)-TENM2) 996,201,201 
201 m990 = ONE - TENM2 

IF (ET990-A(L3.L2,Ll)) 996,202,202 
202 IF (B(L3.L2,Ll)-TRX?) 996,203,203 

"3/DSQRT(A(L3,U,Ll)) - ONE 
(PTSOO/B(L3.L2,Ll))*DLOG(ARG) 

Function Evaluation ***** 

ONE/DCOSH(AA*IMDD) 
YO ( ~ 3 ,  L2, L1) + AA*C (L3, L2, L1) *ARG*ARG 
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c 
996 WRITE(6,1072) 

WRITE(8,1072) 
Go To 999 

C 

C 

C WRITE(6.1071) 
C WRITE(8.1071) 
C 

C 

C ***** No-1 -it ***** 

997 CONTINUE 

C e * * * *  EXIT ttttt 

999 RETURN 
END 
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c 
c 
C ***** This subroutine Defines the 'ACTUAL," (i.e., the Reference) 
C Plant Model including both Input and Output Signals from 
C On-Line Test Data. 
C 
C 
C ***** Start SUBRtXlTNE2 DSPATE ***** 
C 
C 
C 
C ***** The "[LEyLAM).OFTIMNNITypECOM.INC' File is Included here. 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 
1000 
1001 
1071 
1072 
7011 

C 
C 

This file contains the statements which establish and define: 
1) the Principal CCMKSI Blocks; 2) the Data TYPE of the 
Principal Parameters, Arrays, and Vectors: and 3 )  the 
D-ICN of the Principal Arrays and Vectors of the 
OFTIMNN System. 

INTEGEFt.4 JERR 

RERL*8 X(NL2DIM), Y(NL2DIM) 

FORMAT(2HO ) 
MRMAT(2Hl ) 
FORMAT(42HO ***** NORMAL EXIT FROM DSTATE * * * * * / / I  
FORMAT(41HO ***** ERROR EXIT FRGM DSTATE * * * * * / I )  
FUFUYAT (4D20.7) 

C ***** Initialisation ***** 
C 
C ***** Subroutine DSTATE has NGT been &fined yet. 
C 

C 

C 

IF (JERR) 996,997,996 

C * * * *e  Error &it * * e * *  

996 hlRITE(6.1072) 
WRITE (8,1072 
Go To 999 

C 

C 

C WRITE(6.1071) 
C WRITE(8.1071) 
C 

C ***** N o m 1  &it ***** 

997 CONTINUE 

C **tt* =IT **et* 

c 
999 RE!." 

END 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

*****  This subroutine Defines the 'ACNAL' (i.e., 
plant Model including both Input and Output 
Stored Data Table. 

the Reference) 
Signals from a 

***** Start SUBROUTINE TSPATE ***** 

***** The ~[KEYLAND.O~IMIUN]TYP~.INC' File is Included here. 
This file contains the statements which establish and define: 
1) the Principal CCM4ON Blocks; 2) the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3) the 
DIMENSION of the Principal Arrays and Vectors of the 
OPT- System. 

INCLUDE ' [LEYLAND.OPTIM"lTYPEcCM.INC' 

1000 FORMAT(2HO 
1001 m T ( 2 H 1  
1071 MXMAT(42HO ***** NORMAL EXIT FFKM TSTATE * * * * * / / I  
1072 FORMAT(41HO ***** ERROR EXIT FROM TSTATE ***** / I )  
1073 MRMAT(66HO ***** ERROR EXIT FRCM =ATE WHR4 THE MAXIMUM NUMBE 

1R OF TABLE711X.66H VALUES DEFINED BY ' T B W "  IS EXCEEDED. 
2 ***** / / )  

7011 FoRMAT(4D20.7) 
C 
C 
C ***** Initialisation ***** 
C 

m = o  
LTBL. = ISTEP 
IF (LTBL-TBW) 10, 10, 995 

10 T = Tl'BL(LTBL) 
c 
C ***** Evaluate for Both the Plant Input and Plant Output Vectors ***** 
C 

C 
C ***** Evaluate for Each Vector Elenent ***** 
C 

M) 310 L1=1,2 

IF (L1-2) 373, 371, 996 
371 IF ("ID) 372, 372, 373 
372 CALL STATF3N(X,Y,JERR) 

IF (JERR .NE. 0) Go TQ 996 
GO TO 310 

373 M) 210 U=l,NL2(Ll) 
GO TO (201,202). L1 

201 X(L2) = XTBL(L2,LTBL) 
GO To 203 

202 Y(U) = YTBL(L2,LTBL) 
203 IF (JERR) 996,210,996 

210 CONTINUE 

310 CONTINUE 

C 

C 

C 
C ***** Error Exit when the Maximum Number of Table Values defined 
C by T%W' is Exceeded. ***** 
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C 
Go To 997 

WRITE (6,1073 ) 
WRITE ( 8,1073 ) 
Go To 999 

995 JERR = 1 

C 

C 

C ***** Error Exit  * * * * *  

996 WRITE(6,1072) 
WRITE (8,1072) 
Go M 999 

C 

C 

C WRITE(6,1071) 
C WRITE(8,1071) 
C 
c ***** EXIT ***** 
C 

C *e*** No-1 bit * * * * *  

997 CohPIINuE 

999 RETURN 
END 

C234567890123456789012345678901234567890~234567890123456789012345678901234567890 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Defines the "ACNAL' (1.e.. the Reference) 
Plant -1 including both Input and Output Signals from a 
User Supplied Model. 

***** Start SUBROUTINE USTATE ***** 

***** The '[LEyLAND.OPTIM"lTYPMIoM.INC" File is Included here. 
This file contains the statements which establish and define: 
1) the h-incipal c€" Blocks; 2) the Data W E  of the 
Principal Parameters, Arrays, and Vectors; and 3 )  the 
DIMEXSIW of the Principal Arrays and Vectors of the 
OPTIMNN System. 

1000 FORMAT(2HO 1 
1001 FORMAT(2H1 ) 
1071 FORMAT(42HO ***** NORMAL EXIT FRCM USTATE ***** / / )  
1072 FORMAT(41HO ***** ERROR EXIT FROM USATE *****//I 
7011 FoRMAT(4D20.7) 

C 
C 
C ***** Initialisation ***** 
C 
C ***** Subroutine USTATE has NOT been defined yet. 
c 

IF (JERR) 996,997,996 
C 

C 

C * *e* *  Error ~t ***** 

996 WRITE(6.1072) 
WRITE(6.1072) 
Go To 999 

C 
C ***** Normal 
C 

C WRITE(6,1071 
C WRITE(8.1071 
C 

997 CONTINUE 

C2345678901234567890123456789012345676901234567690123456769012345676901234567690 
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